BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 10653713)

  • 1. Natural mediators in the oxidation of polycyclic aromatic hydrocarbons by laccase mediator systems.
    Johannes C; Majcherczyk A
    Appl Environ Microbiol; 2000 Feb; 66(2):524-8. PubMed ID: 10653713
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Degradation of polycyclic aromatic hydrocarbons by Rigidoporus lignosus and its laccase in the presence of redox mediators.
    Cambria MT; Minniti Z; Librando V; Cambria A
    Appl Biochem Biotechnol; 2008 Apr; 149(1):1-8. PubMed ID: 18350382
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polycyclic aromatic hydrocarbon metabolism by white rot fungi and oxidation by Coriolopsis gallica UAMH 8260 laccase.
    Pickard MA; Roman R; Tinoco R; Vazquez-Duhalt R
    Appl Environ Microbiol; 1999 Sep; 65(9):3805-9. PubMed ID: 10473379
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transformation of polycyclic aromatic hydrocarbons by laccase is strongly enhanced by phenolic compounds present in soil.
    Cañas AI; Alcalde M; Plou F; Martínez MJ; Martínez AT; Camarero S
    Environ Sci Technol; 2007 Apr; 41(8):2964-71. PubMed ID: 17533865
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidation of polycyclic aromatic hydrocarbons by the bacterial laccase CueO from E. coli.
    Zeng J; Lin X; Zhang J; Li X; Wong MH
    Appl Microbiol Biotechnol; 2011 Mar; 89(6):1841-9. PubMed ID: 21120471
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Degradation of phenanthrene by Trametes versicolor and its laccase.
    Han MJ; Choi HT; Song HG
    J Microbiol; 2004 Jun; 42(2):94-8. PubMed ID: 15357301
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Degradation of anthracene by laccase of Trametes versicolor in the presence of different mediator compounds.
    Johannes C; Majcherczyk A; Hüttermann A
    Appl Microbiol Biotechnol; 1996 Oct; 46(3):313-7. PubMed ID: 8933845
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative characterization of four laccases from Trametes versicolor concerning phenolic C-C coupling and oxidation of PAHs.
    Koschorreck K; Richter SM; Swierczek A; Beifuss U; Schmid RD; Urlacher VB
    Arch Biochem Biophys; 2008 Jun; 474(1):213-9. PubMed ID: 18367094
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The degradative activity and adaptation potential of the litter-decomposing fungus Stropharia rugosoannulata.
    Pozdnyakova N; Schlosser D; Dubrovskaya E; Balandina S; Sigida E; Grinev V; Turkovskaya O
    World J Microbiol Biotechnol; 2018 Aug; 34(9):133. PubMed ID: 30109517
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced activity by poly(ethylene glycol) modification of Coriolopsis gallica laccase.
    Vandertol-Vanier HA; Vazquez-Duhalt R; Tinoco R; Pickard MA
    J Ind Microbiol Biotechnol; 2002 Nov; 29(5):214-20. PubMed ID: 12407453
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzymatic nanoreactors for environmentally benign biotransformations. 1. Formation and catalytic activity of supramolecular complexes of laccase and linear-dendritic block copolymers.
    Gitsov I; Hamzik J; Ryan J; Simonyan A; Nakas JP; Omori S; Krastanov A; Cohen T; Tanenbaum SW
    Biomacromolecules; 2008 Mar; 9(3):804-11. PubMed ID: 18257555
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Applicability of Coriolopsis rigida for biodegradation of polycyclic aromatic hydrocarbons.
    Gómez J; Rodríguez Solar D; Pazos M; Sanromán MA
    Biotechnol Lett; 2006 Jul; 28(13):1013-7. PubMed ID: 16786260
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structure of a four-copper laccase complexed with an arylamine: insights into substrate recognition and correlation with kinetics.
    Bertrand T; Jolivalt C; Briozzo P; Caminade E; Joly N; Madzak C; Mougin C
    Biochemistry; 2002 Jun; 41(23):7325-33. PubMed ID: 12044164
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidation of a laccase mediator ABTS as studied by ESI-FTICR mass spectrometry.
    Marjasvaara A; Jänis J; Vainiotalo P
    J Mass Spectrom; 2008 Apr; 43(4):470-7. PubMed ID: 17975855
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Degradation of polycyclic aromatic hydrocarbons by crude extracts from spent mushroom substrate and its possible mechanisms.
    Li X; Lin X; Zhang J; Wu Y; Yin R; Feng Y; Wang Y
    Curr Microbiol; 2010 May; 60(5):336-42. PubMed ID: 19924475
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of mediators on laccase catalyzed radical formation in lignin.
    Munk L; Andersen ML; Meyer AS
    Enzyme Microb Technol; 2018 Sep; 116():48-56. PubMed ID: 29887016
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Laccase activity tests and laccase inhibitors.
    Johannes C; Majcherczyk A
    J Biotechnol; 2000 Mar; 78(2):193-9. PubMed ID: 10725542
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Purification, molecular characterization and reactivity with aromatic compounds of a laccase from basidiomycete Trametes sp. strain AH28-2.
    Xiao YZ; Tu XM; Wang J; Zhang M; Cheng Q; Zeng WY; Shi YY
    Appl Microbiol Biotechnol; 2003 Feb; 60(6):700-7. PubMed ID: 12664149
    [TBL] [Abstract][Full Text] [Related]  

  • 19. First evidence of catalytic mediation by phenolic compounds in the laccase-induced oxidation of lignin models.
    d'Acunzo F; Galli C
    Eur J Biochem; 2003 Sep; 270(17):3634-40. PubMed ID: 12919328
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phenolic compounds as enhancers in enzymatic and electrochemical oxidation of veratryl alcohol and lignins.
    Díaz-González M; Vidal T; Tzanov T
    Appl Microbiol Biotechnol; 2011 Mar; 89(6):1693-700. PubMed ID: 21110019
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.