These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
241 related articles for article (PubMed ID: 10653920)
1. Mapping target site selection for the non-specific nuclease activities of retroviral integrase. Katzman M; Sudol M; Pufnock JS; Zeto S; Skinner LM Virus Res; 2000 Jan; 66(1):87-100. PubMed ID: 10653920 [TBL] [Abstract][Full Text] [Related]
2. Mapping viral DNA specificity to the central region of integrase by using functional human immunodeficiency virus type 1/visna virus chimeric proteins. Katzman M; Sudol M J Virol; 1998 Mar; 72(3):1744-53. PubMed ID: 9499023 [TBL] [Abstract][Full Text] [Related]
3. Mapping domains of retroviral integrase responsible for viral DNA specificity and target site selection by analysis of chimeras between human immunodeficiency virus type 1 and visna virus integrases. Katzman M; Sudol M J Virol; 1995 Sep; 69(9):5687-96. PubMed ID: 7637015 [TBL] [Abstract][Full Text] [Related]
4. Nucleophile selection for the endonuclease activities of human, ovine, and avian retroviral integrases. Skinner LM; Sudol M; Harper AL; Katzman M J Biol Chem; 2001 Jan; 276(1):114-24. PubMed ID: 11024025 [TBL] [Abstract][Full Text] [Related]
5. Characterization of the functional domains of human foamy virus integrase using chimeric integrases. Lee HS; Kang SY; Shin CG Mol Cells; 2005 Apr; 19(2):246-55. PubMed ID: 15879710 [TBL] [Abstract][Full Text] [Related]
6. Characterization of chimeric enzymes between caprine arthritis--encephalitis virus, maedi--visna virus and human immunodeficiency virus type 1 integrases expressed in Escherichia coli. Berger N; Heller AE; Störmann KD; Pfaff E J Gen Virol; 2001 Jan; 82(Pt 1):139-148. PubMed ID: 11125167 [TBL] [Abstract][Full Text] [Related]
7. Role of the nonspecific DNA-binding region and alpha helices within the core domain of retroviral integrase in selecting target DNA sites for integration. Appa RS; Shin CG; Lee P; Chow SA J Biol Chem; 2001 Dec; 276(49):45848-55. PubMed ID: 11585830 [TBL] [Abstract][Full Text] [Related]
8. Influence of subterminal viral DNA nucleotides on differential susceptibility to cleavage by human immunodeficiency virus type 1 and visna virus integrases. Katzman M; Sudol M J Virol; 1996 Dec; 70(12):9069-73. PubMed ID: 8971046 [TBL] [Abstract][Full Text] [Related]
9. Subterminal viral DNA nucleotides as specific recognition signals for human immunodeficiency virus type 1 and visna virus integrases under magnesium-dependent conditions. Morgan AL; Katzman M J Gen Virol; 2000 Mar; 81(Pt 3):839-49. PubMed ID: 10675422 [TBL] [Abstract][Full Text] [Related]
10. Central core domain of retroviral integrase is responsible for target site selection. Shibagaki Y; Chow SA J Biol Chem; 1997 Mar; 272(13):8361-9. PubMed ID: 9079660 [TBL] [Abstract][Full Text] [Related]
11. An amino acid in the central catalytic domain of three retroviral integrases that affects target site selection in nonviral DNA. Harper AL; Sudol M; Katzman M J Virol; 2003 Mar; 77(6):3838-45. PubMed ID: 12610159 [TBL] [Abstract][Full Text] [Related]
12. Structural basis for functional tetramerization of lentiviral integrase. Hare S; Di Nunzio F; Labeja A; Wang J; Engelman A; Cherepanov P PLoS Pathog; 2009 Jul; 5(7):e1000515. PubMed ID: 19609359 [TBL] [Abstract][Full Text] [Related]
13. In vitro activities of purified visna virus integrase. Katzman M; Sudol M J Virol; 1994 Jun; 68(6):3558-69. PubMed ID: 8189495 [TBL] [Abstract][Full Text] [Related]
14. In vitro assays for activities of retroviral integrase. Chow SA Methods; 1997 Aug; 12(4):306-17. PubMed ID: 9245611 [TBL] [Abstract][Full Text] [Related]
15. Mapping features of HIV-1 integrase near selected sites on viral and target DNA molecules in an active enzyme-DNA complex by photo-cross-linking. Heuer TS; Brown PO Biochemistry; 1997 Sep; 36(35):10655-65. PubMed ID: 9271496 [TBL] [Abstract][Full Text] [Related]
16. Comparative studies of bacterially expressed integrase proteins of caprine arthritis-encephalitis virus, maedi-visna virus and human immunodeficiency virus type 1. Störmann KD; Schlecht MC; Pfaff E J Gen Virol; 1995 Jul; 76 ( Pt 7)():1651-63. PubMed ID: 9049371 [TBL] [Abstract][Full Text] [Related]
17. Ubiquitination of non-lysine residues in the retroviral integrase. Wang Z; Hou X; Wang Y; Xu A; Cao W; Liao M; Zhang R; Tang J Biochem Biophys Res Commun; 2017 Dec; 494(1-2):57-62. PubMed ID: 29054407 [TBL] [Abstract][Full Text] [Related]
18. Use of patient-derived human immunodeficiency virus type 1 integrases to identify a protein residue that affects target site selection. Harper AL; Skinner LM; Sudol M; Katzman M J Virol; 2001 Aug; 75(16):7756-62. PubMed ID: 11462051 [TBL] [Abstract][Full Text] [Related]
19. Juxtaposition of two viral DNA ends in a bimolecular disintegration reaction mediated by multimers of human immunodeficiency virus type 1 or murine leukemia virus integrase. Chow SA; Brown PO J Virol; 1994 Dec; 68(12):7869-78. PubMed ID: 7966577 [TBL] [Abstract][Full Text] [Related]
20. Fusion proteins consisting of human immunodeficiency virus type 1 integrase and the designed polydactyl zinc finger protein E2C direct integration of viral DNA into specific sites. Tan W; Zhu K; Segal DJ; Barbas CF; Chow SA J Virol; 2004 Feb; 78(3):1301-13. PubMed ID: 14722285 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]