These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 10654258)
81. Flexible DNA target site recognition by divergent homing endonuclease isoschizomers I-CreI and I-MsoI. Chevalier B; Turmel M; Lemieux C; Monnat RJ; Stoddard BL J Mol Biol; 2003 May; 329(2):253-69. PubMed ID: 12758074 [TBL] [Abstract][Full Text] [Related]
82. Analyzing the forces binding a restriction endonuclease to DNA using a synthetic nanopore. Dorvel B; Sigalov G; Zhao Q; Comer J; Dimitrov V; Mirsaidov U; Aksimentiev A; Timp G Nucleic Acids Res; 2009 Jul; 37(12):4170-9. PubMed ID: 19433506 [TBL] [Abstract][Full Text] [Related]
83. Grouping together highly diverged PD-(D/E)XK nucleases and identification of novel superfamily members using structure-guided alignment of sequence profiles. Bujnicki JM; Rychlewski L J Mol Microbiol Biotechnol; 2001 Jan; 3(1):69-72. PubMed ID: 11200231 [TBL] [Abstract][Full Text] [Related]
84. Structural evolution of the protein kinase-like superfamily. Scheeff ED; Bourne PE PLoS Comput Biol; 2005 Oct; 1(5):e49. PubMed ID: 16244704 [TBL] [Abstract][Full Text] [Related]
85. Identification of a new subfamily of HNH nucleases and experimental characterization of a representative member, HphI restriction endonuclease. Cymerman IA; Obarska A; Skowronek KJ; Lubys A; Bujnicki JM Proteins; 2006 Dec; 65(4):867-76. PubMed ID: 17029241 [TBL] [Abstract][Full Text] [Related]
86. Structural, functional and evolutionary relationships between homing endonucleases and proteins from their host organisms. Taylor GK; Stoddard BL Nucleic Acids Res; 2012 Jul; 40(12):5189-200. PubMed ID: 22406833 [TBL] [Abstract][Full Text] [Related]
87. Structure of BamHI bound to nonspecific DNA: a model for DNA sliding. Viadiu H; Aggarwal AK Mol Cell; 2000 May; 5(5):889-95. PubMed ID: 10882125 [TBL] [Abstract][Full Text] [Related]
88. Modulation of DNA-mediated hole transport efficiency by DNA-protein complex formation. Dohno C; Nakatani K; Saito I Nucleic Acids Res Suppl; 2001; (1):15-6. PubMed ID: 12836241 [TBL] [Abstract][Full Text] [Related]
89. Assessment of the optimization of affinity and specificity at protein-DNA interfaces. Ashworth J; Baker D Nucleic Acids Res; 2009 Jun; 37(10):e73. PubMed ID: 19389725 [TBL] [Abstract][Full Text] [Related]
90. Type II restriction endonucleases: structural, functional and evolutionary relationships. Kovall RA; Matthews BW Curr Opin Chem Biol; 1999 Oct; 3(5):578-83. PubMed ID: 10508668 [TBL] [Abstract][Full Text] [Related]
91. Probing the role of interfacial waters in protein-DNA recognition using a hybrid implicit/explicit solvation model. Li S; Bradley P Proteins; 2013 Aug; 81(8):1318-29. PubMed ID: 23444044 [TBL] [Abstract][Full Text] [Related]
92. Protein-DNA recognition complexes: conservation of structure and binding energy in the transition state. Jen-Jacobson L Biopolymers; 1997; 44(2):153-80. PubMed ID: 9354759 [TBL] [Abstract][Full Text] [Related]
93. Phylogenomic analysis of the GIY-YIG nuclease superfamily. Dunin-Horkawicz S; Feder M; Bujnicki JM BMC Genomics; 2006 Apr; 7():98. PubMed ID: 16646971 [TBL] [Abstract][Full Text] [Related]
94. Self-assembled DNA hydrogels with designable thermal and enzymatic responsiveness. Xing Y; Cheng E; Yang Y; Chen P; Zhang T; Sun Y; Yang Z; Liu D Adv Mater; 2011 Mar; 23(9):1117-21. PubMed ID: 21181766 [No Abstract] [Full Text] [Related]
95. The RNase H-like superfamily: new members, comparative structural analysis and evolutionary classification. Majorek KA; Dunin-Horkawicz S; Steczkiewicz K; Muszewska A; Nowotny M; Ginalski K; Bujnicki JM Nucleic Acids Res; 2014 Apr; 42(7):4160-79. PubMed ID: 24464998 [TBL] [Abstract][Full Text] [Related]
96. Picture story. An unfolding story on binding. Riddihough G Nat Struct Biol; 1995 Sep; 2(9):745. PubMed ID: 7552744 [No Abstract] [Full Text] [Related]
97. Sequence diversity among related genes for recognition of specific targets in DNA molecules. Gough JA; Murray NE J Mol Biol; 1983 May; 166(1):1-19. PubMed ID: 6304321 [TBL] [Abstract][Full Text] [Related]
98. Challenges in Assembling the Dated Tree of Life. Schrago CG; Mello B Genome Biol Evol; 2024 Oct; 16(10):. PubMed ID: 39475308 [TBL] [Abstract][Full Text] [Related]
99. Structome: a tool for the rapid assembly of datasets for structural phylogenetics. Malik AJ; Langer D; Verma CS; Poole AM; Allison JR Bioinform Adv; 2023; 3(1):vbad134. PubMed ID: 38046099 [TBL] [Abstract][Full Text] [Related]
100. Evolutionary Origins of DNA Repair Pathways: Role of Oxygen Catastrophe in the Emergence of DNA Glycosylases. Prorok P; Grin IR; Matkarimov BT; Ishchenko AA; Laval J; Zharkov DO; Saparbaev M Cells; 2021 Jun; 10(7):. PubMed ID: 34202661 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]