These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 10654259)

  • 1. Gene expression, amino acid conservation, and hydrophobicity are the main factors shaping codon preferences in Mycobacterium tuberculosis and Mycobacterium leprae.
    de Miranda AB; Alvarez-Valin F; Jabbari K; Degrave WM; Bernardi G
    J Mol Evol; 2000 Jan; 50(1):45-55. PubMed ID: 10654259
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contrasting evolutionary rates in the duplicate chaperonin genes of Mycobacterium tuberculosis and M. leprae.
    Hughes AL
    Mol Biol Evol; 1993 Nov; 10(6):1343-59. PubMed ID: 7506344
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reinvestigation on the causes of genomic GC variation between the orthologous genes of Mycobacterium tuberculosis and Mycobacterium leprae.
    Gupta SK; Ghosh TC
    Biochem Biophys Res Commun; 2003 Mar; 303(1):65-8. PubMed ID: 12646167
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extensive sequence homology between the mycobacterium leprae LSR (12 kDa) antigen and its Mycobacterium tuberculosis counterpart.
    Oftung F; Mustafa AS; Wiker HG
    FEMS Immunol Med Microbiol; 2000 Jan; 27(1):87-9. PubMed ID: 10617795
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolutionary bottlenecks in the agents of tuberculosis, leprosy, and paratuberculosis.
    Frothingham R
    Med Hypotheses; 1999 Feb; 52(2):95-9. PubMed ID: 10340288
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sequence homology and expression profile of genes associated with DNA repair pathways in
    Sharma M; Vedithi SC; Das M; Roy A; Ebenezer M
    Int J Mycobacteriol; 2017; 6(4):365-378. PubMed ID: 29171451
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interactions of OxyR with the promoter region of the oxyR and ahpC genes from Mycobacterium leprae and Mycobacterium tuberculosis.
    Dhandayuthapani S; Mudd M; Deretic V
    J Bacteriol; 1997 Apr; 179(7):2401-9. PubMed ID: 9079928
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Codon usage in highly expressed genes of Haemophillus influenzae and Mycobacterium tuberculosis: translational selection versus mutational bias.
    Pan A; Dutta C; Das J
    Gene; 1998 Jul; 215(2):405-13. PubMed ID: 9714839
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Codon usage in the Mycobacterium tuberculosis complex.
    Andersson SGE; Sharp PM
    Microbiology (Reading); 1996 Apr; 142 ( Pt 4)():915-925. PubMed ID: 8936318
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Local comparison of the genomes of Mycobacterium tuberculosis and Mycobacterium leprae using the polymerase chain reaction.
    Philipp WJ; Cole ST
    FEMS Microbiol Lett; 1995 Oct; 132(3):263-9. PubMed ID: 7590183
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biological implications of Mycobacterium leprae gene expression during infection.
    Williams DL; Torrero M; Wheeler PR; Truman RW; Yoder M; Morrison N; Bishai WR; Gillis TP
    J Mol Microbiol Biotechnol; 2004; 8(1):58-72. PubMed ID: 15741741
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lipid synthesis in mycobacteria: characterization of the biotin carboxyl carrier protein genes from Mycobacterium leprae and M. tuberculosis.
    Norman E; De Smet KA; Stoker NG; Ratledge C; Wheeler PR; Dale JW
    J Bacteriol; 1994 May; 176(9):2525-31. PubMed ID: 7909542
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comprehensive Analysis and Comparison on the Codon Usage Pattern of Whole
    Gun L; Yumiao R; Haixian P; Liang Z
    Biomed Res Int; 2018; 2018():3574976. PubMed ID: 29854746
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Organization of the origins of replication of the chromosomes of Mycobacterium smegmatis, Mycobacterium leprae and Mycobacterium tuberculosis and isolation of a functional origin from M. smegmatis.
    Salazar L; Fsihi H; de Rossi E; Riccardi G; Rios C; Cole ST; Takiff HE
    Mol Microbiol; 1996 Apr; 20(2):283-93. PubMed ID: 8733228
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Mycobacterium leprae-specific gene encoding an immunologically recognized 45 kDa protein.
    Rinke de Wit TF; Clark-Curtiss JE; Abebe F; Kolk AH; Janson AA; van Agterveld M; Thole JE
    Mol Microbiol; 1993 Nov; 10(4):829-38. PubMed ID: 7934845
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mycobacterium leprae RecA is structurally analogous but functionally distinct from Mycobacterium tuberculosis RecA protein.
    Patil KN; Singh P; Harsha S; Muniyappa K
    Biochim Biophys Acta; 2011 Dec; 1814(12):1802-11. PubMed ID: 22001565
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aminoglycoside 2'-N-acetyltransferase genes are universally present in mycobacteria: characterization of the aac(2')-Ic gene from Mycobacterium tuberculosis and the aac(2')-Id gene from Mycobacterium smegmatis.
    Aínsa JA; Pérez E; Pelicic V; Berthet FX; Gicquel B; Martín C
    Mol Microbiol; 1997 Apr; 24(2):431-41. PubMed ID: 9159528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mycobacterium lepromatosis genome exhibits unusually high CpG dinucleotide content and selection is key force in shaping codon usage.
    Munjal A; Khandia R; Shende KK; Das J
    Infect Genet Evol; 2020 Oct; 84():104399. PubMed ID: 32512206
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The mammalian cell entry operon 1 (mce1) of mycobacterium leprae and mycobacterium tuberculosis.
    Wiker HG; Spierings E; Kolkman MA; Ottenhoff TH; Harboe M
    Microb Pathog; 1999 Sep; 27(3):173-7. PubMed ID: 10455007
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Codon usage divergence of important functional genes in Mycobacterium tuberculosis.
    Li G; Zhang L; Xue P
    Int J Biol Macromol; 2022 Jun; 209(Pt A):1197-1204. PubMed ID: 35460756
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.