These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 10654674)

  • 1. Multiple evidence of a segmental defect in the anterior forebrain of an animal model of hyperactivity and attention deficit.
    Sadile AG
    Neurosci Biobehav Rev; 2000 Jan; 24(1):161-9. PubMed ID: 10654674
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Remodeling of neural networks in the anterior forebrain of an animal model of hyperactivity and attention deficits as monitored by molecular imaging probes.
    Papa M; Sellitti S; Sadile AG
    Neurosci Biobehav Rev; 2000 Jan; 24(1):149-56. PubMed ID: 10654672
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A rostro-caudal dissociation in the dorsal and ventral striatum of the juvenile SHR suggests an anterior hypo- and a posterior hyperfunctioning mesocorticolimbic system.
    Papa M; Diewald L; Carey MP; Esposito FJ; Gironi Carnevale UA; Sadile AG
    Behav Brain Res; 2002 Mar; 130(1-2):171-9. PubMed ID: 11864732
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential distribution, affinity and plasticity of dopamine D-1 and D-2 receptors in the target sites of the mesolimbic system in an animal model of ADHD.
    Carey MP; Diewald LM; Esposito FJ; Pellicano MP; Gironi Carnevale UA; Sergeant JA; Papa M; Sadile AG
    Behav Brain Res; 1998 Jul; 94(1):173-85. PubMed ID: 9708848
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reduced transduction mechanisms in the anterior accumbal interface of an animal model of Attention-Deficit Hyperactivity Disorder.
    Papa M; Sergeant JA; Sadile AG
    Behav Brain Res; 1998 Jul; 94(1):187-95. PubMed ID: 9708849
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reduced CaMKII-positive neurones in the accumbens shell of an animal model of attention-deficit hyperactivity disorder.
    Papa M; Sagvolden T; Sergeant JA; Sadile AG
    Neuroreport; 1996 Nov; 7(18):3017-20. PubMed ID: 9116231
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Altered dopaminergic function in the prefrontal cortex, nucleus accumbens and caudate-putamen of an animal model of attention-deficit hyperactivity disorder--the spontaneously hypertensive rat.
    Russell V; de Villiers A; Sagvolden T; Lamm M; Taljaard J
    Brain Res; 1995 Apr; 676(2):343-51. PubMed ID: 7614004
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A quantitative cytochrome oxidase mapping study, cross-regional and neurobehavioural correlations in the anterior forebrain of an animal model of Attention Deficit Hyperactivity Disorder.
    Papa M; Berger DF; Sagvolden T; Sergeant JA; Sadile AG
    Behav Brain Res; 1998 Jul; 94(1):197-211. PubMed ID: 9708850
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differences between electrically-, ritalin- and D-amphetamine-stimulated release of [3H]dopamine from brain slices suggest impaired vesicular storage of dopamine in an animal model of Attention-Deficit Hyperactivity Disorder.
    Russell V; de Villiers A; Sagvolden T; Lamm M; Taljaard J
    Behav Brain Res; 1998 Jul; 94(1):163-71. PubMed ID: 9708847
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Methylphenidate affects striatal dopamine differently in an animal model for attention-deficit/hyperactivity disorder--the spontaneously hypertensive rat.
    Russell VA; de Villiers AS; Sagvolden T; Lamm MC; Taljaard JJ
    Brain Res Bull; 2000 Sep; 53(2):187-92. PubMed ID: 11044595
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methylphenidate normalizes elevated dopamine transporter densities in an animal model of the attention-deficit/hyperactivity disorder combined type, but not to the same extent in one of the attention-deficit/hyperactivity disorder inattentive type.
    Roessner V; Sagvolden T; Dasbanerjee T; Middleton FA; Faraone SV; Walaas SI; Becker A; Rothenberger A; Bock N
    Neuroscience; 2010 Jun; 167(4):1183-91. PubMed ID: 20211696
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Region-specific elevation of D₁ receptor-mediated neurotransmission in the nucleus accumbens of SHR, a rat model of attention deficit/hyperactivity disorder.
    Ohno Y; Okano M; Masui A; Imaki J; Egawa M; Yoshihara C; Tatara A; Mizuguchi Y; Sasa M; Shimizu S
    Neuropharmacology; 2012 Sep; 63(4):547-54. PubMed ID: 22580374
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aberrant CaMKII activity in the medial prefrontal cortex is associated with cognitive dysfunction in ADHD model rats.
    Yabuki Y; Shioda N; Maeda T; Hiraide S; Togashi H; Fukunaga K
    Brain Res; 2014 Apr; 1557():90-100. PubMed ID: 24561222
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Up-regulation of dopamine receptors in the brain of the spontaneously hypertensive rat: an autoradiographic analysis.
    Kirouac GJ; Ganguly PK
    Neuroscience; 1993 Jan; 52(1):135-41. PubMed ID: 8433803
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Brain dopamine D-2 receptor mechanisms in spontaneously hypertensive rats.
    Van den Buuse M; Jones CR; Wagner J
    Brain Res Bull; 1992 Feb; 28(2):289-97. PubMed ID: 1375862
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The usefulness of the spontaneously hypertensive rat to model attention-deficit/hyperactivity disorder (ADHD) may be explained by the differential expression of dopamine-related genes in the brain.
    Li Q; Lu G; Antonio GE; Mak YT; Rudd JA; Fan M; Yew DT
    Neurochem Int; 2007 May; 50(6):848-57. PubMed ID: 17395336
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alpha 2-adrenoceptor mediated inhibition of [3H]dopamine release from nucleus accumbens slices and monoamine levels in a rat model for attention-deficit hyperactivity disorder.
    de Villiers AS; Russell VA; Sagvolden T; Searson A; Jaffer A; Taljaard JJ
    Neurochem Res; 1995 Apr; 20(4):427-33. PubMed ID: 7651580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Downregulation of Dopamine D1-like Receptor Pathways of GABAergic Interneurons in the Anterior Cingulate Cortex of Spontaneously Hypertensive Rats.
    Satoh H; Suzuki H; Saitow F
    Neuroscience; 2018 Dec; 394():267-285. PubMed ID: 30394321
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dopamine D1 and D2 receptors in the caudate nucleus of spontaneously hypertensive rats and normotensive Wistar-Kyoto rats.
    Linthorst AC; De Jong W; De Boer T; Versteeg DH
    Brain Res; 1993 Jan; 602(1):119-25. PubMed ID: 8448648
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential expression of transcription factors in the accumbens of an animal model of ADHD.
    Papa M; Sergeant JA; Sadile AG
    Neuroreport; 1997 May; 8(7):1607-12. PubMed ID: 9189900
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.