These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Oscillatory transverse electric field enhances mass transfer and protein capacity in ion-exchange electrochromatography. Tan GM; Shi QH; Sun Y J Chromatogr A; 2005 Dec; 1098(1-2):131-7. PubMed ID: 16314169 [TBL] [Abstract][Full Text] [Related]
4. Continuous beds for microchromatography: cation-exchange chromatography. Li YM; Liao JL; Nakazato K; Mohammad J; Terenius L; Hjertén S Anal Biochem; 1994 Nov; 223(1):153-8. PubMed ID: 7695092 [TBL] [Abstract][Full Text] [Related]
5. Towards a microchip-based chromatographic platform. Part 1: Evaluation of sol-gel phases for capillary electrochromatography. Breadmore MC; Shrinivasan S; Wolfe KA; Power ME; Ferrance JP; Hosticka B; Norris PM; Landers JP Electrophoresis; 2002 Oct; 23(20):3487-95. PubMed ID: 12412116 [TBL] [Abstract][Full Text] [Related]
6. Continuous beds for microchromatography: chromatofocusing and anion exchange chromatography. Li YM; Liao JL; Zhang R; Henriksson H; Hjertén S Anal Biochem; 1999 Feb; 267(1):121-4. PubMed ID: 9918663 [TBL] [Abstract][Full Text] [Related]
7. Prototyping of thermoplastic microfluidic chips and their application in high-performance liquid chromatography separations of small molecules. Wouters S; De Vos J; Dores-Sousa JL; Wouters B; Desmet G; Eeltink S J Chromatogr A; 2017 Nov; 1523():224-233. PubMed ID: 28619590 [TBL] [Abstract][Full Text] [Related]
8. Recent advances in polymer monoliths for ion-exchange chromatography. Nordborg A; Hilder EF Anal Bioanal Chem; 2009 May; 394(1):71-84. PubMed ID: 19205669 [TBL] [Abstract][Full Text] [Related]
9. Monolithic beds of artificial gel antibodies. Rezeli M; Kilár F; Hjertén S J Chromatogr A; 2006 Mar; 1109(1):100-2. PubMed ID: 16359682 [TBL] [Abstract][Full Text] [Related]
10. Target-selective ion-exchange media for highly hydrophilic compounds: a possible solution by use of the "interval immobilization technique". Kubo T; Tanaka N; Hosoya K Anal Bioanal Chem; 2004 Jan; 378(1):84-8. PubMed ID: 14615864 [TBL] [Abstract][Full Text] [Related]
11. Ion exchange resin bead decoupled high-pressure electroosmotic pump. Yang B; Zhang F; Liang X; Dasgupta PK; Liu S Anal Chem; 2009 Jun; 81(12):5102-6. PubMed ID: 19449862 [TBL] [Abstract][Full Text] [Related]
13. Chiral separation of amino acids by ligand-exchange capillary electrochromatography using continuous beds. Schmid MG; Grobuschek N; Tuscher C; Gübitz G; Végvári A; Machtejevas E; Maruska A; Hjertén S Electrophoresis; 2000 Sep; 21(15):3141-4. PubMed ID: 11001211 [TBL] [Abstract][Full Text] [Related]
14. Incorporation of single-wall carbon nanotubes into an organic polymer monolithic stationary phase for mu-HPLC and capillary electrochromatography. Li Y; Chen Y; Xiang R; Ciuparu D; Pfefferle LD; Horváth C; Wilkins JA Anal Chem; 2005 Mar; 77(5):1398-406. PubMed ID: 15732924 [TBL] [Abstract][Full Text] [Related]
15. Electroosmosis injection of blood serum into biocompatible microcapillary chip fabricated on quartz plate. Oki A; Adachi S; Takamura Y; Ishihara K; Ogawa H; Ito Y; Ichiki T; Horiike Y Electrophoresis; 2001 Jan; 22(2):341-7. PubMed ID: 11288903 [TBL] [Abstract][Full Text] [Related]
16. Strong cation exchange monoliths for HPLC by Reactive Gelation. Brand B; Krättli M; Storti G; Morbidelli M J Sep Sci; 2011 Aug; 34(16-17):2159-63. PubMed ID: 21796787 [TBL] [Abstract][Full Text] [Related]
17. Comparison of small size fully porous particles and superficially porous particles of chiral anion-exchange type stationary phases in ultra-high performance liquid chromatography: effect of particle and pore size on chromatographic efficiency and kinetic performance. Schmitt K; Woiwode U; Kohout M; Zhang T; Lindner W; Lämmerhofer M J Chromatogr A; 2018 Sep; 1569():149-159. PubMed ID: 30041874 [TBL] [Abstract][Full Text] [Related]