BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 10655706)

  • 1. [Modification of noxious spinal stimulation on trigemino-trigeminal reflex--analysis in an in vitro brainstem-spinal cord preparation from newborn rats].
    Hokazono T
    Kokubyo Gakkai Zasshi; 1999 Dec; 66(4):397-405. PubMed ID: 10655706
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Newborn rat brainstem preparation with the trigeminal nerve attached for pain study.
    Hamba M; Onimaru H
    Brain Res Brain Res Protoc; 1998 Sep; 3(1):7-13. PubMed ID: 9767080
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Muscarinic excitatory and inhibitory mechanisms involved in afferent fibre-evoked depolarization of motoneurones in the neonatal rat spinal cord.
    Kurihara T; Suzuki H; Yanagisawa M; Yoshioka K
    Br J Pharmacol; 1993 Sep; 110(1):61-70. PubMed ID: 7693289
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of a tachykinin antagonist on a nociceptive reflex in the isolated spinal cord-tail preparation of the newborn rat.
    Otsuka M; Yanagisawa M
    J Physiol; 1988 Jan; 395():255-70. PubMed ID: 2457677
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous recordings of wind-up of paired spinal dorsal horn nociceptive neuron and nociceptive flexion reflex in rats.
    You HJ; Dahl Morch C; Chen J; Arendt-Nielsen L
    Brain Res; 2003 Jan; 960(1-2):235-45. PubMed ID: 12505677
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spastic long-lasting reflexes in the awake rat after sacral spinal cord injury.
    Bennett DJ; Sanelli L; Cooke CL; Harvey PJ; Gorassini MA
    J Neurophysiol; 2004 May; 91(5):2247-58. PubMed ID: 15069102
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro eye-blink reflex model: role of excitatory amino acids and labeling of network activity with sulforhodamine.
    Keifer J
    Exp Brain Res; 1993; 97(2):239-53. PubMed ID: 7908648
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification and functional characterization of the trigeminal ventral cervical reflex pathway in the swine.
    Kato S; Papuashvili N; Okada YC
    Clin Neurophysiol; 2003 Feb; 114(2):263-71. PubMed ID: 12559233
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antinociceptive effects of tizanidine, diazepam and eperisone in isolated spinal cord-tail preparations of newborn rat.
    Ishizuki M; Yanagisawa M
    Pain; 1992 Jan; 48(1):101-106. PubMed ID: 1482424
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition and facilitation of different nocifensor reflexes by spatially remote noxious stimuli.
    Morgan MM; Heinricher MM; Fields HL
    J Neurophysiol; 1994 Sep; 72(3):1152-60. PubMed ID: 7807200
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Depression of primary afferent-evoked responses by GR71251 in the isolated spinal cord of the neonatal rat.
    Guo JZ; Yoshioka K; Yanagisawa M; Hosoki R; Hagan RM; Otsuka M
    Br J Pharmacol; 1993 Nov; 110(3):1142-8. PubMed ID: 7507777
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antidromic discharges of dorsal root afferents and inhibition of the lumbar monosynaptic reflex in the neonatal rat.
    Vinay L; Clarac F
    Neuroscience; 1999 Apr; 90(1):165-76. PubMed ID: 10188943
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Brainstem segmental arrangement of sucking rhythm generators for trigeminal, facial and hypoglossal motoneurons].
    Nakajima M
    Kokubyo Gakkai Zasshi; 1999 Mar; 66(1):88-97. PubMed ID: 10332151
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interactions between visceral and cutaneous nociception in the rat. II. Noxious visceral stimuli inhibit cutaneous nociceptive neurons and reflexes.
    Ness TJ; Gebhart GF
    J Neurophysiol; 1991 Jul; 66(1):29-39. PubMed ID: 1919672
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The excitatory and inhibitory modulation of primary afferent fibre-evoked responses of ventral roots in the neonatal rat spinal cord exerted by nitric oxide.
    Kurihara T; Yoshioka K
    Br J Pharmacol; 1996 Aug; 118(7):1743-53. PubMed ID: 8842440
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The thresholds of the jaw-opening reflex and trigeminal brainstem neurons to tooth-pulp stimulation in acutely and chronically prepared cats.
    Clarke RW; Matthews B
    Neuroscience; 1990; 36(1):105-14. PubMed ID: 2215914
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Involvement of histaminergic inputs in the jaw-closing reflex arc.
    Gemba C; Nakayama K; Nakamura S; Mochizuki A; Inoue M; Inoue T
    J Neurophysiol; 2015 Jun; 113(10):3720-35. PubMed ID: 25904711
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulation of spinal reflexes by pyramidal tract stimulation in an in vitro brainstem-spinal cord preparation from the hamster.
    Keifer J; Kalil K
    Exp Brain Res; 1989; 78(3):633-40. PubMed ID: 2693127
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Excitation of lumbar motoneurons by the medial longitudinal fasciculus in the in vitro brain stem spinal cord preparation of the neonatal rat.
    Floeter MK; Lev-Tov A
    J Neurophysiol; 1993 Dec; 70(6):2241-50. PubMed ID: 8120580
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tail-pinch method in vitro and the effects of some antinociceptive compounds.
    Yanagisawa M; Murakoshi T; Tamai S; Otsuka M
    Eur J Pharmacol; 1984 Nov; 106(2):231-9. PubMed ID: 6152216
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.