These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 10656047)

  • 1. Effects of the glycocalyx on the electrophoretic mobility of red cells and on streaming potentials in blood vessels: predictions of a structurally-based model.
    Mestel AJ; Mokady AJ; Parker KH; Winlove CP
    Biorheology; 1998; 35(6):365-81. PubMed ID: 10656047
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modelling the glycocalyx-endothelium-erythrocyte interaction in the microcirculation: a computational study.
    Pontrelli G; Halliday I; Spencer TJ; König CS; Collins MW
    Comput Methods Biomech Biomed Engin; 2015; 18(4):351-61. PubMed ID: 23734750
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of the endothelial-cell glycocalyx on the motion of red blood cells through capillaries.
    Damiano ER
    Microvasc Res; 1998 Jan; 55(1):77-91. PubMed ID: 9473411
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrophoretic mobility of human red blood cells coated with poly(ethylene glycol).
    Neu B; Armstrong JK; Fisher TC; Bäumler H; Meiselman HJ
    Biorheology; 2001; 38(5-6):389-403. PubMed ID: 12016322
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrostatic fixed charge distribution in the RBC-glycocalyx and their influence upon the total free interaction energy.
    Lerche D
    Biorheology; 1984; 21(4):477-92. PubMed ID: 6487761
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrochemical analysis of blood cell/substrate interactions under flow conditions.
    Godin C; Violleau M; Caprani A
    Biorheology; 1995; 32(5):571-87. PubMed ID: 8541525
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calculation of the electrophoretic mobility of a particle bearing bound polyelectrolyte using the nonlinear poisson-boltzmann equation.
    Sharp KA; Brooks DE
    Biophys J; 1985 Apr; 47(4):563-6. PubMed ID: 19431592
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The cell-free layer in microvascular blood flow.
    Kim S; Ong PK; Yalcin O; Intaglietta M; Johnson PC
    Biorheology; 2009; 46(3):181-9. PubMed ID: 19581726
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A fully analytical approach to investigate the electro-viscous effect of the endothelial glycocalyx layer on the microvascular blood flow.
    Khosravi A; Shirazi HA; Asnafi A; Karimi A
    Clin Chim Acta; 2017 Sep; 472():5-12. PubMed ID: 28694125
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of the endothelial surface layer on transmission of fluid shear stress to endothelial cells.
    Secomb TW; Hsu R; Pries AR
    Biorheology; 2001; 38(2-3):143-50. PubMed ID: 11381171
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theory of the electrokinetic behavior of human erythrocytes.
    Levine S; Levine M; Sharp KA; Brooks DE
    Biophys J; 1983 May; 42(2):127-35. PubMed ID: 6860771
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrokinetic effect of the endothelial glycocalyx layer on two-phase blood flow in small blood vessels.
    Liu M; Yang J
    Microvasc Res; 2009 Jun; 78(1):14-9. PubMed ID: 19362568
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A model for red blood cell motion in glycocalyx-lined capillaries.
    Secomb TW; Hsu R; Pries AR
    Am J Physiol; 1998 Mar; 274(3):H1016-22. PubMed ID: 9530216
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellular fluid mechanics.
    Kamm RD
    Annu Rev Fluid Mech; 2002; 34():211-32. PubMed ID: 12741392
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Red blood cell aggregation and dissociation in shear flows simulated by lattice Boltzmann method.
    Zhang J; Johnson PC; Popel AS
    J Biomech; 2008; 41(1):47-55. PubMed ID: 17888442
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrokinetic flow and electric current in a fibrous porous medium.
    Wu YY; Keh HJ
    J Phys Chem B; 2012 Mar; 116(11):3578-86. PubMed ID: 22369485
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of erythrocytes in leukocyte-endothelial interactions: mathematical model and experimental validation.
    Munn LL; Melder RJ; Jain RK
    Biophys J; 1996 Jul; 71(1):466-78. PubMed ID: 8804629
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The electric potential profile across the erythrocyte membrane.
    Heinrich R; Gaestel M; Glaser R
    J Theor Biol; 1982 May; 96(2):211-31. PubMed ID: 7121027
    [No Abstract]   [Full Text] [Related]  

  • 19. Cell-cell affinity of senescent human erythrocytes.
    Neu B; Sowemimo-Coker SO; Meiselman HJ
    Biophys J; 2003 Jul; 85(1):75-84. PubMed ID: 12829466
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Role of endothelial glycocalyx in mechanogenic control of arterial hydraulic resistance].
    Mel'kumiants AM
    Usp Fiziol Nauk; 2012; 43(4):45-58. PubMed ID: 23227721
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.