BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 10656258)

  • 1. Cytokine and growth factor involvement in long-term potentiation.
    Jankowsky JL; Patterson PH
    Mol Cell Neurosci; 1999 Dec; 14(6):273-86. PubMed ID: 10656258
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cytokine and growth factor involvement in long-term potentiation.
    Jankowsky JL; Patterson PH
    Mol Cell Neurosci; 1999; 14(4-5):273-86. PubMed ID: 10588384
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of late-phase LTP and long-term memory in normal and aging hippocampus: role of secreted proteins tPA and BDNF.
    Pang PT; Lu B
    Ageing Res Rev; 2004 Nov; 3(4):407-30. PubMed ID: 15541709
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Neuronal cytokine involvement in synaptic plasticity].
    Takagi H
    Nihon Yakurigaku Zasshi; 2000 Apr; 115(4):201-7. PubMed ID: 10876804
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The 5-hydroxytryptamine4 receptor exhibits frequency-dependent properties in synaptic plasticity and behavioural metaplasticity in the hippocampal CA1 region in vivo.
    Kemp A; Manahan-Vaughan D
    Cereb Cortex; 2005 Jul; 15(7):1037-43. PubMed ID: 15537670
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pleiotrophin inhibits hippocampal long-term potentiation: a role of pleiotrophin in learning and memory.
    del Olmo N; Gramage E; Alguacil LF; Pérez-Pinera P; Deuel TF; Herradón G
    Growth Factors; 2009 Jun; 27(3):189-94. PubMed ID: 19384682
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hippocampal long term potentiation: silent synapses and beyond.
    Poncer JC
    J Physiol Paris; 2003; 97(4-6):415-22. PubMed ID: 15242653
    [TBL] [Abstract][Full Text] [Related]  

  • 8. N-methyl-D-aspartate receptor-dependent long-term potentiation in CA1 region affects synaptic expression of glutamate receptor subunits and associated proteins in the whole hippocampus.
    Zhong WX; Dong ZF; Tian M; Cao J; Xu L; Luo JH
    Neuroscience; 2006 Sep; 141(3):1399-413. PubMed ID: 16766131
    [TBL] [Abstract][Full Text] [Related]  

  • 9. D1 but not D5 dopamine receptors are critical for LTP, spatial learning, and LTP-Induced arc and zif268 expression in the hippocampus.
    Granado N; Ortiz O; Suárez LM; Martín ED; Ceña V; Solís JM; Moratalla R
    Cereb Cortex; 2008 Jan; 18(1):1-12. PubMed ID: 17395606
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antagonism of glutamate receptors in the CA1 to perirhinal cortex projection prevents long-term potentiation and attenuates levels of brain-derived neurotrophic factor.
    Kealy J; Commins S
    Brain Res; 2009 Apr; 1265():53-64. PubMed ID: 19232328
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antagonism of group III metabotropic glutamate receptors results in impairment of LTD but not LTP in the hippocampal CA1 region, and prevents long-term spatial memory.
    Altinbilek B; Manahan-Vaughan D
    Eur J Neurosci; 2007 Sep; 26(5):1166-72. PubMed ID: 17767495
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of hippocampal synaptic plasticity by cyclic AMP-dependent protein kinases.
    Nguyen PV; Woo NH
    Prog Neurobiol; 2003 Dec; 71(6):401-37. PubMed ID: 15013227
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impaired long-term memory and long-term potentiation in N-type Ca2+ channel-deficient mice.
    Jeon D; Kim C; Yang YM; Rhim H; Yim E; Oh U; Shin HS
    Genes Brain Behav; 2007 Jun; 6(4):375-88. PubMed ID: 16939638
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neuropsin is essential for early processes of memory acquisition and Schaffer collateral long-term potentiation in adult mouse hippocampus in vivo.
    Tamura H; Ishikawa Y; Hino N; Maeda M; Yoshida S; Kaku S; Shiosaka S
    J Physiol; 2006 Feb; 570(Pt 3):541-51. PubMed ID: 16308352
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Leptin facilitates learning and memory performance and enhances hippocampal CA1 long-term potentiation and CaMK II phosphorylation in rats.
    Oomura Y; Hori N; Shiraishi T; Fukunaga K; Takeda H; Tsuji M; Matsumiya T; Ishibashi M; Aou S; Li XL; Kohno D; Uramura K; Sougawa H; Yada T; Wayner MJ; Sasaki K
    Peptides; 2006 Nov; 27(11):2738-49. PubMed ID: 16914228
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Teaching resources. Long-term potentiation: mechanisms of induction and maintenance.
    Blitzer RD
    Sci STKE; 2005 Nov; 2005(309):tr26. PubMed ID: 16278490
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An epigenetic induction of a right-shift in hippocampal asymmetry: selectivity for short- and long-term potentiation but not post-tetanic potentiation.
    Tang AC; Zou B; Reeb BC; Connor JA
    Hippocampus; 2008; 18(1):5-10. PubMed ID: 17924531
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gene expression in the conversion of early-phase to late-phase long-term potentiation.
    Lee PR; Cohen JE; Becker KG; Fields RD
    Ann N Y Acad Sci; 2005 Jun; 1048():259-71. PubMed ID: 16154938
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activity-dependent changes of the hippocampal CA3-CA1 synapse during the acquisition of associative learning in conscious mice.
    Gruart A; Delgado-García JM
    Genes Brain Behav; 2007 Jun; 6 Suppl 1():24-31. PubMed ID: 17543036
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TrkB signalling pathways in LTP and learning.
    Minichiello L
    Nat Rev Neurosci; 2009 Dec; 10(12):850-60. PubMed ID: 19927149
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.