These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
200 related articles for article (PubMed ID: 10656316)
1. Formation of a bioactive graded surface structure on Ti-15Mo-5Zr-3Al alloy by chemical treatment. Kim HM; Takadama H; Kokubo T; Nishiguchi S; Nakamura T Biomaterials; 2000 Feb; 21(4):353-8. PubMed ID: 10656316 [TBL] [Abstract][Full Text] [Related]
2. Preparation of bioactive Ti and its alloys via simple chemical surface treatment. Kim HM; Miyaji F; Kokubo T; Nakamura T J Biomed Mater Res; 1996 Nov; 32(3):409-17. PubMed ID: 8897146 [TBL] [Abstract][Full Text] [Related]
3. Graded surface structure of bioactive titanium prepared by chemical treatment. Kim HM; Miyaji F; Kokubo T; Nishiguchi S; Nakamura T J Biomed Mater Res; 1999 May; 45(2):100-7. PubMed ID: 10397963 [TBL] [Abstract][Full Text] [Related]
4. Compositional dependence of the apatite formation ability of Ti-Zr alloys designed for hard tissue reconstruction. Miyazaki T; Hosokawa T; Yokoyama K; Shiraishi T J Mater Sci Mater Med; 2020 Nov; 31(11):110. PubMed ID: 33165675 [TBL] [Abstract][Full Text] [Related]
5. Hardness and microstructure of Ti-15Mo-5Zr-3Al alloy for dental casting. Kochi M; Koizumi H; Murakami M; Kikuchi H; Matsumura H; Yoneyama T Acta Odontol Scand; 2011 Nov; 69(6):328-33. PubMed ID: 21426269 [TBL] [Abstract][Full Text] [Related]
6. Biocompatible low Young's modulus achieved by strong crystallographic elastic anisotropy in Ti-15Mo-5Zr-3Al alloy single crystal. Lee SH; Todai M; Tane M; Hagihara K; Nakajima H; Nakano T J Mech Behav Biomed Mater; 2012 Oct; 14():48-54. PubMed ID: 22963746 [TBL] [Abstract][Full Text] [Related]
7. Preparation of bioactive Ti-15Zr-4Nb-4Ta alloy from HCl and heat treatments after an NaOH treatment. Yamaguchi S; Takadama H; Matsushita T; Nakamura T; Kokubo T J Biomed Mater Res A; 2011 May; 97(2):135-44. PubMed ID: 21370443 [TBL] [Abstract][Full Text] [Related]
8. Effect of surface roughness of Ti, Zr, and TiZr on apatite precipitation from simulated body fluid. Chen X; Nouri A; Li Y; Lin J; Hodgson PD; Wen C Biotechnol Bioeng; 2008 Oct; 101(2):378-87. PubMed ID: 18454499 [TBL] [Abstract][Full Text] [Related]
9. Effect of metallographic structure and machining process on the apatite-forming ability of sodium hydroxide- and heat-treated titanium. Miyazaki T; Sasaki T; Shirosaki Y; Yokoyama K; Kawashita M Biomed Mater Eng; 2018; 29(1):109-118. PubMed ID: 29254077 [TBL] [Abstract][Full Text] [Related]
10. Bioactive macroporous titanium surface layer on titanium substrate. Kim HM; Kokubo T; Fujibayashi S; Nishiguchi S; Nakamura T J Biomed Mater Res; 2000 Dec; 52(3):553-7. PubMed ID: 11007624 [TBL] [Abstract][Full Text] [Related]
11. Surface potential change in bioactive titanium metal during the process of apatite formation in simulated body fluid. Kim HM; Himeno T; Kawashita M; Lee JH; Kokubo T; Nakamura T J Biomed Mater Res A; 2003 Dec; 67(4):1305-9. PubMed ID: 14624517 [TBL] [Abstract][Full Text] [Related]
12. Effect of water treatment on the apatite-forming ability of NaOH-treated titanium metal. Uchida M; Kim HM; Kokubo T; Fujibayashi S; Nakamura T J Biomed Mater Res; 2002; 63(5):522-30. PubMed ID: 12209896 [TBL] [Abstract][Full Text] [Related]
13. Fabrication and characteristics of bioactive sodium titanate/titania graded film on NiTi shape memory alloy. Chu CL; Chung CY; Zhou J; Pu YP; Lin PH J Biomed Mater Res A; 2005 Dec; 75(3):595-602. PubMed ID: 16106440 [TBL] [Abstract][Full Text] [Related]
14. Effect of different post-treatments on the bioactivity of alkali-treated Ti-5Si alloy. Hsu HC; Wu SC; Hsu SK; Liao YH; Ho WF Biomed Mater Eng; 2017; 28(5):503-514. PubMed ID: 28854492 [TBL] [Abstract][Full Text] [Related]
15. Antibacterial and bioactive calcium titanate layers formed on Ti metal and its alloys. Kizuki T; Matsushita T; Kokubo T J Mater Sci Mater Med; 2014 Jul; 25(7):1737-46. PubMed ID: 24682896 [TBL] [Abstract][Full Text] [Related]
16. An X-ray photoelectron spectroscopy study of the process of apatite formation on bioactive titanium metal. Takadama H; Kim HM; Kokubo T; Nakamura T J Biomed Mater Res; 2001 May; 55(2):185-93. PubMed ID: 11255170 [TBL] [Abstract][Full Text] [Related]
17. Apatite formation on zirconium metal treated with aqueous NaOH. Uchida M; Kim HM; Miyaji F; Kokubo T; Nakamura T Biomaterials; 2002 Jan; 23(1):313-7. PubMed ID: 11762851 [TBL] [Abstract][Full Text] [Related]
18. Improvement of hydroxyapatite formation ability of titanium-based alloys by combination of acid etching and apatite nuclei precipitation. Yabutsuka T; Kidokoro Y; Takai S IET Nanobiotechnol; 2020 Oct; 14(8):688-694. PubMed ID: 33108325 [TBL] [Abstract][Full Text] [Related]
19. Castability and mechanical properties of Ti-15Mo-5Zr-3Al alloy in dental casting. Koizumi H; Ishii T; Okazaki T; Kaketani M; Matsumura H; Yoneyama T J Oral Sci; 2018; 60(2):285-292. PubMed ID: 29925713 [TBL] [Abstract][Full Text] [Related]
20. TEM-EDX study of mechanism of bonelike apatite formation on bioactive titanium metal in simulated body fluid. Takadama H; Kim HM; Kokubo T; Nakamura T J Biomed Mater Res; 2001 Dec; 57(3):441-8. PubMed ID: 11523039 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]