These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 10656523)

  • 1. Roles of calcium- and voltage-sensitive potassium currents in the generation of neuromagnetic signals and field potentials in a CA3 longitudinal slice of the guinea-pig.
    Wu J; Okada YC
    Clin Neurophysiol; 2000 Jan; 111(1):150-60. PubMed ID: 10656523
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Roles of a potassium afterhyperpolarization current in generating neuromagnetic fields and field potentials in longitudinal CA3 slices of the guinea-pig.
    Wu J; Okada YC
    Clin Neurophysiol; 1999 Nov; 110(11):1858-67. PubMed ID: 10576480
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physiological origins of evoked magnetic fields and extracellular field potentials produced by guinea-pig CA3 hippocampal slices.
    Murakami S; Zhang T; Hirose A; Okada YC
    J Physiol; 2002 Oct; 544(Pt 1):237-51. PubMed ID: 12356895
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contribution of ionic currents to magnetoencephalography (MEG) and electroencephalography (EEG) signals generated by guinea-pig CA3 slices.
    Murakami S; Hirose A; Okada YC
    J Physiol; 2003 Dec; 553(Pt 3):975-85. PubMed ID: 14528026
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genesis of MEG signals in a mammalian CNS structure.
    Okada YC; Wu J; Kyuhou S
    Electroencephalogr Clin Neurophysiol; 1997 Oct; 103(4):474-85. PubMed ID: 9368492
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contribution of the low-threshold T-type calcium current in generating the post-spike depolarizing afterpotential in dentate granule neurons of immature rats.
    Zhang L; Valiante TA; Carlen PL
    J Neurophysiol; 1993 Jul; 70(1):223-31. PubMed ID: 8395576
    [TBL] [Abstract][Full Text] [Related]  

  • 7. K-dependent inhibition in the dentate-CA3 network of guinea pig hippocampal slices.
    Misgeld U; Bijak M; Brunner H; Dembowsky K
    J Neurophysiol; 1992 Nov; 68(5):1548-57. PubMed ID: 1362214
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Different mechanisms underlying the repolarization of narrow and wide action potentials in pyramidal cells and interneurons of cat motor cortex.
    Chen W; Zhang JJ; Hu GY; Wu CP
    Neuroscience; 1996 Jul; 73(1):57-68. PubMed ID: 8783229
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of the ion channel currents in single myocytes of the guinea pig prostate.
    Lang RJ; Mulholland E; Exintaris B
    J Urol; 2004 Sep; 172(3):1179-87. PubMed ID: 15311066
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inactivating and non-inactivating potassium currents in isolated inner hair cells from guinea pig cochlea.
    Kimitsuki T; Ohashi M; Wada Y; Fukudome S; Komune S
    Acta Otolaryngol Suppl; 2004 Aug; (553):28-32. PubMed ID: 15277032
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sodium-activated potassium conductance participates in the depolarizing afterpotential following a single action potential in rat hippocampal CA1 pyramidal cells.
    Liu X; Stan Leung L
    Brain Res; 2004 Oct; 1023(2):185-92. PubMed ID: 15374744
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chloride-cotransport blockade desynchronizes neuronal discharge in the "epileptic" hippocampal slice.
    Hochman DW; Schwartzkroin PA
    J Neurophysiol; 2000 Jan; 83(1):406-17. PubMed ID: 10634883
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Picrotoxin- and 4-aminopyridine-induced activity in hilar neurons in the guinea pig hippocampal slice.
    Müller W; Misgeld U
    J Neurophysiol; 1991 Jan; 65(1):141-7. PubMed ID: 1999728
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physiological bases of the synchronized population spikes and slow wave of the magnetic field generated by a guinea-pig longitudinal CA3 slice preparation.
    Wu J; Okada YC
    Electroencephalogr Clin Neurophysiol; 1998 Nov; 107(5):361-73. PubMed ID: 9872439
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of bursts and high-threshold calcium spikes in neurons of rat auditory thalamus.
    Tennigkeit F; Schwarz DW; Puil E
    Neuroscience; 1998 Apr; 83(4):1063-73. PubMed ID: 9502246
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Epileptiform activity in the hippocampus produced by tetraethylammonium.
    Rutecki PA; Lebeda FJ; Johnston D
    J Neurophysiol; 1990 Oct; 64(4):1077-88. PubMed ID: 2258736
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Voltage-activated ionic currents in goldfish pituitary cells.
    Price CJ; Goldberg JI; Chang JP
    Gen Comp Endocrinol; 1993 Oct; 92(1):16-30. PubMed ID: 7505247
    [TBL] [Abstract][Full Text] [Related]  

  • 18. k-Opioid receptor activation of a dendrotoxin-sensitive potassium channel mediates presynaptic inhibition of mossy fiber neurotransmitter release.
    Simmons ML; Chavkin C
    Mol Pharmacol; 1996 Jul; 50(1):80-5. PubMed ID: 8700123
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ionic basis of the action potential of guinea pig gallbladder smooth muscle cells.
    Zhang L; Bonev AD; Nelson MT; Mawe GM
    Am J Physiol; 1993 Dec; 265(6 Pt 1):C1552-61. PubMed ID: 7506489
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activity-dependent modulation of K+ currents at presynaptic terminals of mammalian central synapses.
    Qian J; Saggau P
    J Physiol; 1999 Sep; 519 Pt 2(Pt 2):427-37. PubMed ID: 10457060
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.