BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 10656573)

  • 1. In vitro microbiological characterization of novel cyclic homopentapeptides, CP-101,680 and CP-163,234, for animal health use.
    Norcia LJ; Silvia AM; Dirlam JP; Schnur RC; Bergeron JM; Retsema JA; Hayashi SF
    J Antibiot (Tokyo); 1999 Nov; 52(11):1007-16. PubMed ID: 10656573
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro microbiological characterization of novel macrolide CP-163,505 for animal health specific use.
    Norcia LJ; Seibel SB; Kamicker BJ; Lemay MA; Lilley SC; Hecker SJ; Bergeron JM; Retsema JA; Hayashi SF
    J Antibiot (Tokyo); 1998 Feb; 51(2):136-44. PubMed ID: 9544934
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activity of di-beta-lysyl-capreomycin IIA and palmitoyl tuberactinamine N against drug-resistant mutants with altered ribosomes.
    Yamada T; Teshima T; Shiba T
    Antimicrob Agents Chemother; 1981 Dec; 20(6):834-6. PubMed ID: 6173016
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro microbiological characterization of a novel azalide, two triamilides and an azalide ketal against bovine and porcine respiratory pathogens.
    Norcia LJ; Silvia AM; Santoro SL; Retsema J; Letavic MA; Bronk BS; Lundy KM; Yang B; Evans NA; Hayashi SF
    J Antibiot (Tokyo); 2004 Apr; 57(4):280-8. PubMed ID: 15217193
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The ototoxic interaction of viomycin, capreomycin and polymyxin B with ethacrynic acid.
    Davis RR; Brummett RE; Bendrick TW; Himes DL
    Acta Otolaryngol; 1982; 93(1-6):211-7. PubMed ID: 6175163
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Semisynthesis of di-beta-lysylcapreomycin IIA, a capreomycin analog effective against viomycin-resistant Mycobacterium.
    Wakamiya T; Shiba T
    J Antibiot (Tokyo); 1983 Feb; 36(2):197-9. PubMed ID: 6187721
    [No Abstract]   [Full Text] [Related]  

  • 7. Capreomycin susceptibility is increased by TlyA-directed 2'-O-methylation on both ribosomal subunits.
    Monshupanee T; Johansen SK; Dahlberg AE; Douthwaite S
    Mol Microbiol; 2012 Sep; 85(6):1194-203. PubMed ID: 22779429
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Resistance to the antibiotics viomycin and capreomycin in the Streptomyces species which produce them.
    Skinner RH; Cundliffe E
    J Gen Microbiol; 1980 Sep; 120(1):95-104. PubMed ID: 6163840
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activity of florfenicol for Actinobacillus pleuropneumoniae and Pasteurella multocida using standardised versus non-standardised methodology.
    Dorey L; Hobson S; Lees P
    Vet J; 2016 Dec; 218():65-70. PubMed ID: 27938711
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Studies on time-kill kinetics of different classes of antibiotics against veterinary pathogenic bacteria including Pasteurella, Actinobacillus and Escherichia coli.
    Norcia LJ; Silvia AM; Hayashi SF
    J Antibiot (Tokyo); 1999 Jan; 52(1):52-60. PubMed ID: 10092198
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Factors influencing the potency of marbofloxacin for pig pneumonia pathogens Actinobacillus pleuropneumoniae and Pasteurella multocida.
    Dorey L; Hobson S; Lees P
    Res Vet Sci; 2017 Apr; 111():93-98. PubMed ID: 28113129
    [TBL] [Abstract][Full Text] [Related]  

  • 12. N-terminal modifications of Polymyxin B nonapeptide and their effect on antibacterial activity.
    Tsubery H; Ofek I; Cohen S; Fridkin M
    Peptides; 2001 Oct; 22(10):1675-81. PubMed ID: 11587796
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potency of marbofloxacin for pig pneumonia pathogens Actinobacillus pleuropneumoniae and Pasteurella multocida: Comparison of growth media.
    Dorey L; Hobson S; Lees P
    Res Vet Sci; 2017 Apr; 111():43-48. PubMed ID: 27940285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expansion of antibacterial spectrum of xanthorrhizol against Gram-negatives in combination with PMBN and food-grade antimicrobials.
    Kim MS; Kim HR; Kim H; Choi SK; Kim CH; Hwang JK; Park SH
    J Microbiol; 2019 May; 57(5):405-412. PubMed ID: 30796747
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antibacterial activity of palmitoyltuberactinamine N and di-beta-lysylcapreomycin IIA.
    Yamada T; Yamanouchi T; Ono Y; Nagata A; Wakamiya T; Teshima T; Shiba T
    J Antibiot (Tokyo); 1983 Dec; 36(12):1729-34. PubMed ID: 6198315
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A large potentiation effect of serum on the in vitro potency of tulathromycin against Mannheimia haemolytica and Pasteurella multocida.
    Lees P; Illambas J; Potter TJ; Pelligand L; Rycroft A; Toutain PL
    J Vet Pharmacol Ther; 2017 Oct; 40(5):419-428. PubMed ID: 27891615
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular analysis of cross-resistance to capreomycin, kanamycin, amikacin, and viomycin in Mycobacterium tuberculosis.
    Maus CE; Plikaytis BB; Shinnick TM
    Antimicrob Agents Chemother; 2005 Aug; 49(8):3192-7. PubMed ID: 16048924
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Evaluation of kanamycin, viomycin and capreomycin resistance of Mycobacterium tuberculosis].
    Tomoda T; Minami Y; Maekawa Y; Oi Y
    Rinsho Byori; 1971 Jun; 19(6):423-6. PubMed ID: 4111341
    [No Abstract]   [Full Text] [Related]  

  • 19. Pharmacokinetic/pharmacodynamic integration and modelling of florfenicol for the pig pneumonia pathogens Actinobacillus pleuropneumoniae and Pasteurella multocida.
    Dorey L; Pelligand L; Cheng Z; Lees P
    PLoS One; 2017; 12(5):e0177568. PubMed ID: 28552968
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antibacterial spectra of drugs used for chemotherapy of mycobacterial infections.
    Oliva B; Comanducci A; Chopra I
    Tuber Lung Dis; 1998; 79(2):107-9. PubMed ID: 10645448
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.