These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Identification of new potential regulators of the Medicago truncatula-Sinorhizobium meliloti symbiosis using a large-scale suppression subtractive hybridization approach. Godiard L; Niebel A; Micheli F; Gouzy J; Ott T; Gamas P Mol Plant Microbe Interact; 2007 Mar; 20(3):321-32. PubMed ID: 17378435 [TBL] [Abstract][Full Text] [Related]
4. Expression studies on AUX1-like genes in Medicago truncatula suggest that auxin is required at two steps in early nodule development. de Billy F; Grosjean C; May S; Bennett M; Cullimore JV Mol Plant Microbe Interact; 2001 Mar; 14(3):267-77. PubMed ID: 11277424 [TBL] [Abstract][Full Text] [Related]
5. Metabolite profiles of nodulated alfalfa plants indicate that distinct stages of nodule organogenesis are accompanied by global physiological adaptations. Barsch A; Tellström V; Patschkowski T; Küster H; Niehaus K Mol Plant Microbe Interact; 2006 Sep; 19(9):998-1013. PubMed ID: 16941904 [TBL] [Abstract][Full Text] [Related]
6. A CDPK isoform participates in the regulation of nodule number in Medicago truncatula. Gargantini PR; Gonzalez-Rizzo S; Chinchilla D; Raices M; Giammaria V; Ulloa RM; Frugier F; Crespi MD Plant J; 2006 Dec; 48(6):843-56. PubMed ID: 17132148 [TBL] [Abstract][Full Text] [Related]
7. The endosymbiosis-induced genes ENOD40 and CCS52a are involved in endoparasitic-nematode interactions in Medicago truncatula. Favery B; Complainville A; Vinardell JM; Lecomte P; Vaubert D; Mergaert P; Kondorosi A; Kondorosi E; Crespi M; Abad P Mol Plant Microbe Interact; 2002 Oct; 15(10):1008-13. PubMed ID: 12437298 [TBL] [Abstract][Full Text] [Related]
8. Glycine-rich proteins encoded by a nodule-specific gene family are implicated in different stages of symbiotic nodule development in Medicago spp. Kevei Z; Vinardell JM; Kiss GB; Kondorosi A; Kondorosi E Mol Plant Microbe Interact; 2002 Sep; 15(9):922-31. PubMed ID: 12236598 [TBL] [Abstract][Full Text] [Related]
9. Sinorhizobium meliloti nifA mutant induces different gene expression profile from wild type in Alfalfa nodules. Gong ZY; He ZS; Zhu JB; Yu GQ; Zou HS Cell Res; 2006 Oct; 16(10):818-29. PubMed ID: 17001343 [TBL] [Abstract][Full Text] [Related]
10. Identification of novel putative regulatory genes induced during alfalfa nodule development with a cold-plaque screening procedure. Frugier F; Kondorosi A; Crespi M Mol Plant Microbe Interact; 1998 May; 11(5):358-66. PubMed ID: 9574504 [TBL] [Abstract][Full Text] [Related]
11. A novel RNA-binding peptide regulates the establishment of the Medicago truncatula-Sinorhizobium meliloti nitrogen-fixing symbiosis. Laporte P; Satiat-Jeunemaître B; Velasco I; Csorba T; Van de Velde W; Campalans A; Burgyan J; Arevalo-Rodriguez M; Crespi M Plant J; 2010 Apr; 62(1):24-38. PubMed ID: 20042020 [TBL] [Abstract][Full Text] [Related]
12. Stimulation of nodulation in Medicago truncatula by low concentrations of ammonium: quantitative reverse transcription PCR analysis of selected genes. Fei H; Vessey JK Physiol Plant; 2009 Mar; 135(3):317-30. PubMed ID: 19140888 [TBL] [Abstract][Full Text] [Related]
14. Temporal and spatial order of events during the induction of cortical cell divisions in white clover by Rhizobium leguminosarum bv. trifolii inoculation or localized cytokinin addition. Mathesius U; Charon C; Rolfe BG; Kondorosi A; Crespi M Mol Plant Microbe Interact; 2000 Jun; 13(6):617-28. PubMed ID: 10830261 [TBL] [Abstract][Full Text] [Related]
15. Sinorhizobium meliloti nfe (nodulation formation efficiency) genes exhibit temporal and spatial expression patterns similar to those of genes involved in symbiotic nitrogen fixation. García-Rodríguez FM; Toro N Mol Plant Microbe Interact; 2000 Jun; 13(6):583-91. PubMed ID: 10830257 [TBL] [Abstract][Full Text] [Related]
16. Insights into symbiotic nitrogen fixation in Medicago truncatula. Tesfaye M; Samac DA; Vance CP Mol Plant Microbe Interact; 2006 Mar; 19(3):330-41. PubMed ID: 16570662 [TBL] [Abstract][Full Text] [Related]
17. Early symbiotic responses induced by Sinorhizobium meliloti iIvC mutants in alfalfa. López JC; Grasso DH; Frugier F; Crespi MD; Aguilar OM Mol Plant Microbe Interact; 2001 Jan; 14(1):55-62. PubMed ID: 11194871 [TBL] [Abstract][Full Text] [Related]
18. Overlapping plant signal transduction pathways induced by a parasitic nematode and a rhizobial endosymbiont. Koltai H; Dhandaydham M; Opperman C; Thomas J; Bird D Mol Plant Microbe Interact; 2001 Oct; 14(10):1168-77. PubMed ID: 11605956 [TBL] [Abstract][Full Text] [Related]
19. Phosphorus-free membrane lipids of Sinorhizobium meliloti are not required for the symbiosis with alfalfa but contribute to increased cell yields under phosphorus-limiting conditions of growth. López-Lara IM; Gao JL; Soto MJ; Solares-Pérez A; Weissenmayer B; Sohlenkamp C; Verroios GP; Thomas-Oates J; Geiger O Mol Plant Microbe Interact; 2005 Sep; 18(9):973-82. PubMed ID: 16167767 [TBL] [Abstract][Full Text] [Related]
20. Disruption of a gene essential for sulfoquinovosyldiacylglycerol biosynthesis in Sinorhizobium meliloti has no detectable effect on root nodule symbiosis. Weissenmayer B; Geiger O; Benning C Mol Plant Microbe Interact; 2000 Jun; 13(6):666-72. PubMed ID: 10830266 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]