BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 10656795)

  • 1. Post-translational modification of p53 protein in response to ionizing radiation analyzed by mass spectrometry.
    Abraham J; Kelly J; Thibault P; Benchimol S
    J Mol Biol; 2000 Jan; 295(4):853-64. PubMed ID: 10656795
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Signaling to p53: breaking the posttranslational modification code.
    Appella E; Anderson CW
    Pathol Biol (Paris); 2000 Apr; 48(3):227-45. PubMed ID: 10858956
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Post-translational modification of p53 and the integration of stress signals.
    Meek DW
    Pathol Biol (Paris); 1997 Dec; 45(10):804-14. PubMed ID: 9769944
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential post-translational modification of the tumour suppressor proteins Rb and p53 modulate the rates of radiation-induced apoptosis in vivo.
    Wallace M; Coates PJ; Wright EG; Ball KL
    Oncogene; 2001 Jun; 20(28):3597-608. PubMed ID: 11439323
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Post-translational modification of p53.
    Meek DW
    Semin Cancer Biol; 1994 Jun; 5(3):203-10. PubMed ID: 7948948
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Existence of deamidated alphaB-crystallin fragments in normal and cataractous human lenses.
    Srivastava OP; Srivastava K
    Mol Vis; 2003 Apr; 9():110-8. PubMed ID: 12707643
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of phosphorylation sites on histone H1 isoforms by tandem mass spectrometry.
    Garcia BA; Busby SA; Barber CM; Shabanowitz J; Allis CD; Hunt DF
    J Proteome Res; 2004; 3(6):1219-27. PubMed ID: 15595731
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of covalently inhibited extracellular lipase from Streptomyces rimosus by matrix-assisted laser desorption/ionization time-of-flight and matrix-assisted laser desorption/ionization quadrupole ion trap reflectron time-of-flight mass spectrometry: localization of the active site serine.
    Zehl M; Lescić I; Abramić M; Rizzi A; Kojić-Prodić B; Allmaier G
    J Mass Spectrom; 2004 Dec; 39(12):1474-83. PubMed ID: 15578758
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein phosphorylation analysis by site-specific arginine-mimic labeling in gel electrophoresis and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.
    Ahn YH; Ji ES; Kwon KH; Lee JY; Cho K; Kim JY; Kang HJ; Kim HG; Yoo JS
    Anal Biochem; 2007 Nov; 370(1):77-86. PubMed ID: 17659250
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis on heat stress-induced hyperphosphorylation of stathmin at serine 37 in Jurkat cells by means of two-dimensional gel electrophoresis and tandem mass spectrometry.
    Nakamura K; Zhang X; Kuramitsu Y; Fujimoto M; Yuan X; Akada J; Aoshima-Okuda M; Mitani N; Itoh Y; Katoh T; Morita Y; Nagasaka Y; Yamazaki Y; Kuriki T; Sobel A
    J Chromatogr A; 2006 Feb; 1106(1-2):181-9. PubMed ID: 16427064
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mass spectrometric studies on mouse hippocampal synapsins Ia, IIa, and IIb and identification of a novel phosphorylation site at serine-546.
    John JP; Chen WQ; Pollak A; Lubec G
    J Proteome Res; 2007 Jul; 6(7):2695-710. PubMed ID: 17579389
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of the post-translational modifications of salivary acidic proline-rich proteins.
    Castagnola M; Cabras T; Inzitari R; Zuppi C; Rossetti DV; Petruzzelli R; Vitali A; Loy F; Conti G; Fadda MB
    Eur J Morphol; 2003 Apr; 41(2):93-8. PubMed ID: 15621862
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphorylation of the C-terminal sites of human p53 reduces non-sequence-specific DNA binding as modeled with synthetic peptides.
    Hoffmann R; Craik DJ; Pierens G; Bolger RE; Otvos L
    Biochemistry; 1998 Sep; 37(39):13755-64. PubMed ID: 9753464
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of different separation technologies for proteome analyses: isoform resolution as a prerequisite for the definition of protein biomarkers on the level of posttranslational modifications.
    Hunzinger C; Schrattenholz A; Poznanović S; Schwall GP; Stegmann W
    J Chromatogr A; 2006 Aug; 1123(2):170-81. PubMed ID: 16822517
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of endogenous phosphorylation sites of bovine medium and low molecular weight neurofilament proteins by tandem mass spectrometry.
    Trimpin S; Mixon AE; Stapels MD; Kim MY; Spencer PS; Deinzer ML
    Biochemistry; 2004 Feb; 43(7):2091-105. PubMed ID: 14967049
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein posttranslational modifications: phosphorylation site analysis using mass spectrometry.
    Annan RS; Zappacosta F
    Methods Biochem Anal; 2005; 45():85-106. PubMed ID: 19235292
    [No Abstract]   [Full Text] [Related]  

  • 17. Mass spectrometric analysis of histone posttranslational modifications.
    Burlingame AL; Zhang X; Chalkley RJ
    Methods; 2005 Aug; 36(4):383-94. PubMed ID: 16112065
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distinct pattern of p53 phosphorylation in human tumors.
    Minamoto T; Buschmann T; Habelhah H; Matusevich E; Tahara H; Boerresen-Dale AL; Harris C; Sidransky D; Ronai Z
    Oncogene; 2001 Jun; 20(26):3341-7. PubMed ID: 11423984
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of antimicrobial histone sequences and posttranslational modifications by mass spectrometry.
    Ouvry-Patat SA; Schey KL
    J Mass Spectrom; 2007 May; 42(5):664-74. PubMed ID: 17405180
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo posttranslational modifications of the high mobility group A1a proteins in breast cancer cells of differing metastatic potential.
    Edberg DD; Bruce JE; Siems WF; Reeves R
    Biochemistry; 2004 Sep; 43(36):11500-15. PubMed ID: 15350136
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.