These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

389 related articles for article (PubMed ID: 10656819)

  • 1. Display of active subtilisin 309 on phage: analysis of parameters influencing the selection of subtilisin variants with changed substrate specificity from libraries using phosphonylating inhibitors.
    Legendre D; Laraki N; Gräslund T; Bjørnvad ME; Bouchet M; Nygren PA; Borchert TV; Fastrez J
    J Mol Biol; 2000 Feb; 296(1):87-102. PubMed ID: 10656819
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering a substrate-specific cold-adapted subtilisin.
    Tindbaek N; Svendsen A; Oestergaard PR; Draborg H
    Protein Eng Des Sel; 2004 Feb; 17(2):149-56. PubMed ID: 15047911
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Significance of hydrophobic S4-P4 interactions in subtilisin 309 from Bacillus lentus.
    Bech LM; Sørensen SB; Breddam K
    Biochemistry; 1993 Mar; 32(11):2845-52. PubMed ID: 8457550
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selection of Streptomyces griseus protease B mutants with desired alterations in primary specificity using a library screening strategy.
    Sidhu SS; Borgford TJ
    J Mol Biol; 1996 Mar; 257(2):233-45. PubMed ID: 8609620
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Furilisin: a variant of subtilisin BPN' engineered for cleaving tribasic substrates.
    Ballinger MD; Tom J; Wells JA
    Biochemistry; 1996 Oct; 35(42):13579-85. PubMed ID: 8885837
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Do enzymes change the nature of transition states? Mapping the transition state for general acid-base catalysis of a serine protease.
    Bott RR; Chan G; Domingo B; Ganshaw G; Hsia CY; Knapp M; Murray CJ
    Biochemistry; 2003 Sep; 42(36):10545-53. PubMed ID: 12962477
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mutational replacements of the amino acid residues forming the hydrophobic S4 binding pocket of subtilisin 309 from Bacillus lentus.
    Sørensen SB; Bech LM; Meldal M; Breddam K
    Biochemistry; 1993 Sep; 32(35):8994-9. PubMed ID: 8369272
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Binding of amino acid side-chains to S1 cavities of serine proteinases.
    Lu W; Apostol I; Qasim MA; Warne N; Wynn R; Zhang WL; Anderson S; Chiang YW; Ogin E; Rothberg I; Ryan K; Laskowski M
    J Mol Biol; 1997 Feb; 266(2):441-61. PubMed ID: 9047374
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemically modified "polar patch" mutants of subtilisin in peptide synthesis with remarkably broad substrate acceptance: designing combinatorial biocatalysts.
    Matsumoto K; Davis BG; Jones JB
    Chemistry; 2002 Sep; 8(18):4129-37. PubMed ID: 12298003
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Altered flexibility in the substrate-binding site of related native and engineered high-alkaline Bacillus subtilisins.
    Mulder FA; Schipper D; Bott R; Boelens R
    J Mol Biol; 1999 Sep; 292(1):111-23. PubMed ID: 10493861
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of a novel peptide substrate of HSV-1 protease using substrate phage display.
    O'Boyle DR; Pokornowski KA; McCann PJ; Weinheimer SP
    Virology; 1997 Sep; 236(2):338-47. PubMed ID: 9325241
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Purification and biochemical characterization of a novel glutamyl endopeptidase secreted by a clinical isolate of Staphylococcus aureus.
    Park JW; Park JE; Park JK; Lee JS
    Int J Mol Med; 2011 May; 27(5):637-45. PubMed ID: 21347511
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conserved mode of peptidomimetic inhibition and substrate recognition of human cytomegalovirus protease.
    Tong L; Qian C; Massariol MJ; Déziel R; Yoakim C; Lagacé L
    Nat Struct Biol; 1998 Sep; 5(9):819-26. PubMed ID: 9731777
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Isolation of glutamylendopeptidase precursor from B. licheniformis and its processing in vitro].
    Serkina AV; Bushueva AM; Chestukhina GG; Gumpert J; Hoischen C; Kujau M; Shevelev AB
    Vopr Med Khim; 2001; 47(1):111-22. PubMed ID: 11385993
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering a novel specificity in subtilisin BPN'.
    Rheinnecker M; Baker G; Eder J; Fersht AR
    Biochemistry; 1993 Feb; 32(5):1199-203. PubMed ID: 8448130
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of two novel fibrinolytic enzymes from Bacillus subtilis QK02.
    Ko JH; Yan JP; Zhu L; Qi YP
    Comp Biochem Physiol C Toxicol Pharmacol; 2004 Jan; 137(1):65-74. PubMed ID: 14984705
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phage display as a tool for the directed evolution of enzymes.
    Fernandez-Gacio A; Uguen M; Fastrez J
    Trends Biotechnol; 2003 Sep; 21(9):408-14. PubMed ID: 12948674
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selection of catalytically active biotin ligase and trypsin mutants by phage display.
    Heinis C; Huber A; Demartis S; Bertschinger J; Melkko S; Lozzi L; Neri P; Neri D
    Protein Eng; 2001 Dec; 14(12):1043-52. PubMed ID: 11809935
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biochemical and molecular characterization of a detergent-stable serine alkaline protease from Bacillus pumilus CBS with high catalytic efficiency.
    Jaouadi B; Ellouz-Chaabouni S; Rhimi M; Bejar S
    Biochimie; 2008 Sep; 90(9):1291-305. PubMed ID: 18397761
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydroxamate-based peptide inhibitors of matrix metalloprotease 2.
    Jani M; Tordai H; Trexler M; Bányai L; Patthy L
    Biochimie; 2005; 87(3-4):385-92. PubMed ID: 15781326
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.