These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 10657134)

  • 41. Structure and mode of action of the antimicrobial peptide arenicin.
    Andrä J; Jakovkin I; Grötzinger J; Hecht O; Krasnosdembskaya AD; Goldmann T; Gutsmann T; Leippe M
    Biochem J; 2008 Feb; 410(1):113-22. PubMed ID: 17935487
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Methods for assessing the structure and function of cationic antimicrobial peptides.
    Pate M; Blazyk J
    Methods Mol Med; 2008; 142():155-73. PubMed ID: 18437313
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Structure-activity relationships of de novo designed cyclic antimicrobial peptides based on gramicidin S.
    Lee DL; Hodges RS
    Biopolymers; 2003; 71(1):28-48. PubMed ID: 12712499
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Colorimetric reversibility of polydiacetylene supramolecules having enhanced hydrogen-bonding under thermal and pH stimuli.
    Ahn DJ; Chae EH; Lee GS; Shim HY; Chang TE; Ahn KD; Kim JM
    J Am Chem Soc; 2003 Jul; 125(30):8976-7. PubMed ID: 15369329
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Design of novel indolicidin-derived antimicrobial peptides with enhanced cell specificity and potent anti-inflammatory activity.
    Nan YH; Bang JK; Shin SY
    Peptides; 2009 May; 30(5):832-8. PubMed ID: 19428758
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Structural determinants for the membrane interaction of novel bioactive undecapeptides derived from gaegurin 5.
    Won HS; Seo MD; Jung SJ; Lee SJ; Kang SJ; Son WS; Kim HJ; Park TK; Park SJ; Lee BJ
    J Med Chem; 2006 Aug; 49(16):4886-95. PubMed ID: 16884301
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Design of antimicrobial compounds based on peptide structures.
    Appelt C; Schrey AK; Söderhäll JA; Schmieder P
    Bioorg Med Chem Lett; 2007 Apr; 17(8):2334-7. PubMed ID: 17293110
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Energetics of pore formation induced by membrane active peptides.
    Lee MT; Chen FY; Huang HW
    Biochemistry; 2004 Mar; 43(12):3590-9. PubMed ID: 15035629
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Bactericidal microparticles decorated by an antimicrobial peptide for the easy disinfection of sensitive aqueous solutions.
    Blin T; Purohit V; Leprince J; Jouenne T; Glinel K
    Biomacromolecules; 2011 Apr; 12(4):1259-64. PubMed ID: 21348525
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Connecting membrane fluidity and surface charge to pore-forming antimicrobial peptides resistance by an ANN-based predictive model.
    Mehla J; Sood SK
    Appl Microbiol Biotechnol; 2013 May; 97(10):4377-84. PubMed ID: 22836781
    [TBL] [Abstract][Full Text] [Related]  

  • 51. High-throughput screening for antimicrobial compounds using a 96-well format bacterial motility absorbance assay.
    Malapaka VR; Barrese AA; Tripp BC; Tripp BC
    J Biomol Screen; 2007 Sep; 12(6):849-54. PubMed ID: 17644774
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Colorimetric and fluorometric assays based on conjugated polydiacetylene supramolecules for screening acetylcholinesterase and its inhibitors.
    Zhou G; Wang F; Wang H; Kambam S; Chen X; Yoon J
    ACS Appl Mater Interfaces; 2013 Apr; 5(8):3275-80. PubMed ID: 23544614
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A quantitative method for the measurement of membrane affinity by polydiacetylene-based colorimetric assay.
    Zheng F; Wu Z; Chen Y
    Anal Biochem; 2012 Jan; 420(2):171-6. PubMed ID: 22019766
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Evaluation of molecularity of rate-limiting step of pore formation by antimicrobial peptides studied using mitochondria as a biosensor.
    Aliverdieva D; Mamaev D; Snezhkova L; Sholtz C
    Toxicol In Vitro; 2012 Sep; 26(6):939-49. PubMed ID: 22537968
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Colorimetric and fluorometric detection of neomycin based on conjugated polydiacetylene supramolecules.
    Zhou G; Wang F; Wang H; Kambam S; Chen X
    Macromol Rapid Commun; 2013 Jun; 34(11):944-8. PubMed ID: 23649672
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Rapid colorimetric screening of drug interaction and penetration through lipid barriers.
    Katz M; Ben-Shlush I; Kolusheva S; Jelinek R
    Pharm Res; 2006 Mar; 23(3):580-8. PubMed ID: 16511676
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Phospholipid/Polydiacetylene Vesicle-Based Colorimetric Assay for High-Throughput Screening of Bacteriocins and Halocins.
    Yadav MK; Kumar V; Singh B; Tiwari SK
    Appl Biochem Biotechnol; 2017 May; 182(1):142-154. PubMed ID: 27844338
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A new colorimetric assay for studying and rapid screening of membrane penetration enhancers.
    Evrard D; Touitou E; Kolusheva S; Fishov Y; Jelinek R
    Pharm Res; 2001 Jul; 18(7):943-9. PubMed ID: 11496953
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Array-based disease diagnostics using lipid/polydiacetylene vesicles encapsulated in a sol-gel matrix.
    Kolusheva S; Yossef R; Kugel A; Katz M; Volinsky R; Welt M; Hadad U; Drory V; Kliger M; Rubin E; Porgador A; Jelinek R
    Anal Chem; 2012 Jul; 84(14):5925-31. PubMed ID: 22746165
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Label-free visible colorimetric biosensor for detection of multiple pathogenic bacteria based on engineered polydiacetylene liposomes.
    Zhou J; Duan M; Huang D; Shao H; Zhou Y; Fan Y
    J Colloid Interface Sci; 2022 Jan; 606(Pt 2):1684-1694. PubMed ID: 34500167
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.