BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 10657585)

  • 1. Fructose-mediated damage to lens alpha-crystallin: prevention by pyruvate.
    Zhao W; Devamanoharan PS; Varma SD
    Biochim Biophys Acta; 2000 Feb; 1500(2):161-8. PubMed ID: 10657585
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glycation by ascorbic acid oxidation products leads to the aggregation of lens proteins.
    Linetsky M; Shipova E; Cheng R; Ortwerth BJ
    Biochim Biophys Acta; 2008 Jan; 1782(1):22-34. PubMed ID: 18023423
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fructose induced deactivation of glucose-6-phosphate dehydrogenase activity and its prevention by pyruvate: implications in cataract prevention.
    Zhao W; Devamanoharan PS; Varma SD
    Free Radic Res; 1998 Oct; 29(4):315-20. PubMed ID: 9860046
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gamma III-crystallin is the primary target of glycation in the bovine lens incubated under physiological conditions.
    Yan H; Willis AC; Harding JJ
    Biochem J; 2003 Sep; 374(Pt 3):677-85. PubMed ID: 12803541
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation of advanced glycation end (AGE) products in diabetes: prevention by pyruvate and alpha-keto glutarate.
    Varma SD; Devamanoharan PS; Ali AH
    Mol Cell Biochem; 1997 Jun; 171(1-2):23-8. PubMed ID: 9201691
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fructose induced deactivation of antioxidant enzymes: preventive effect of pyruvate.
    Zhao W; Devamanoharan PS; Varma SD
    Free Radic Res; 2000 Jul; 33(1):23-30. PubMed ID: 10826918
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of the site of glycation of gamma-II-crystallin by (14C)-fructose.
    Pennington J; Harding JJ
    Biochim Biophys Acta; 1994 May; 1226(2):163-7. PubMed ID: 8204663
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glycation of crystallins in lenses from aging and diabetic individuals.
    van Boekel MA; Hoenders HJ
    FEBS Lett; 1992 Dec; 314(1):1-4. PubMed ID: 1451795
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonenzymatic glycosylation (glycation) of lens crystallins in diabetes and aging.
    Abraham EC; Swamy MS; Perry RE
    Prog Clin Biol Res; 1989; 304():123-39. PubMed ID: 2780679
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prevention of lens protein glycation by taurine.
    Devamanoharan PS; Ali AH; Varma SD
    Mol Cell Biochem; 1997 Dec; 177(1-2):245-50. PubMed ID: 9450669
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystallin composition of human cataractous lens may be modulated by protein glycation.
    Ramalho J; Marques C; Pereira P; Mota MC
    Graefes Arch Clin Exp Ophthalmol; 1996 Aug; 234 Suppl 1():S232-8. PubMed ID: 8871180
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acetyl- L -carnitine decreases glycation of lens proteins: in vitro studies.
    Swamy-Mruthinti S; Carter AL
    Exp Eye Res; 1999 Jul; 69(1):109-15. PubMed ID: 10375455
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Progressive changes in lens crystallin glycation and high-molecular-weight aggregate formation leading to cataract development in streptozotocin-diabetic rats.
    Perry RE; Swamy MS; Abraham EC
    Exp Eye Res; 1987 Feb; 44(2):269-82. PubMed ID: 3582512
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of structure, stability and aggregation of soluble lens proteins and alpha-crystallin upon non-enzymatic glycation: The pathomechanisms underlying cataract development in diabetic patients.
    Yousefi R; Javadi S; Amirghofran S; Oryan A; Moosavi-Movahedi AA
    Int J Biol Macromol; 2016 Jan; 82():328-38. PubMed ID: 26478093
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transition metal-catalyzed oxidation of ascorbate in human cataract extracts: possible role of advanced glycation end products.
    Saxena P; Saxena AK; Cui XL; Obrenovich M; Gudipaty K; Monnier VM
    Invest Ophthalmol Vis Sci; 2000 May; 41(6):1473-81. PubMed ID: 10798665
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential glycation of rat alpha-, beta- and gamma-crystallins.
    Swamy MS; Abraham EC
    Exp Eye Res; 1991 Apr; 52(4):439-44. PubMed ID: 2037022
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo glycation of bovine lens crystallins.
    Van Boekel MA; Hoenders HJ
    Biochim Biophys Acta; 1992 Sep; 1159(1):99-102. PubMed ID: 1390916
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prevention of α-crystallin glycation and aggregation using l-lysine results in the inhibition of in vitro catalase heat-induced-aggregation and suppression of cataract formation in the diabetic rat.
    Bahmani F; Bathaie SZ; Aldavood SJ; Ghahghaei A
    Int J Biol Macromol; 2019 Jul; 132():1200-1207. PubMed ID: 30965074
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immunochemical detection of glycated beta- and gamma-crystallins in lens and their circulating autoantibodies (IgG) in streptozocin induced diabetic rat.
    Ranjan M; Nayak S; Rao BS
    Mol Vis; 2006 Sep; 12():1077-85. PubMed ID: 17093392
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lens protein composition, glycation and high molecular weight aggregation in aging rats.
    Swamy MS; Abraham EC
    Invest Ophthalmol Vis Sci; 1987 Oct; 28(10):1693-701. PubMed ID: 3654142
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.