These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Mechanisms of surface-tension-induced epithelial cell damage in a model of pulmonary airway reopening. Bilek AM; Dee KC; Gaver DP J Appl Physiol (1985); 2003 Feb; 94(2):770-83. PubMed ID: 12433851 [TBL] [Abstract][Full Text] [Related]
5. Physicochemical effects enhance surfactant transport in pulsatile motion of a semi-infinite bubble. Pillert JE; Gaver DP Biophys J; 2009 Jan; 96(1):312-27. PubMed ID: 18849416 [TBL] [Abstract][Full Text] [Related]
6. Structures of pulmonary surfactant films adsorbed to an air-liquid interface in vitro. Bachofen H; Gerber U; Gehr P; Amrein M; Schürch S Biochim Biophys Acta; 2005 Dec; 1720(1-2):59-72. PubMed ID: 16405864 [TBL] [Abstract][Full Text] [Related]
7. The influence of surfactant on the propagation of a semi-infinite bubble through a liquid-filled compliant channel. Halpern D; Gaver DP J Fluid Mech; 2012 May; 698():125-159. PubMed ID: 22997476 [TBL] [Abstract][Full Text] [Related]
8. Adsorption of pulmonary surfactant protein D to phospholipid monolayers at the air-water interface. Taneva S; Voelker DR; Keough KM Biochemistry; 1997 Jul; 36(26):8173-9. PubMed ID: 9201966 [TBL] [Abstract][Full Text] [Related]
9. Dynamic surface tension of surfactant TA: experiments and theory. Otis DR; Ingenito EP; Kamm RD; Johnson M J Appl Physiol (1985); 1994 Dec; 77(6):2681-8. PubMed ID: 7896607 [TBL] [Abstract][Full Text] [Related]
10. Keratin-rhamnolipids and keratin-sodium dodecyl sulfate interactions at the air/water interface. Ozdemir G; Sezgin OE Colloids Surf B Biointerfaces; 2006 Sep; 52(1):1-7. PubMed ID: 16837174 [TBL] [Abstract][Full Text] [Related]
11. A spreading technique for forming film in a captive bubble. Putz G; Walch M; Van Eijk M; Haagsman HP Biophys J; 1998 Nov; 75(5):2229-39. PubMed ID: 9788918 [TBL] [Abstract][Full Text] [Related]
12. Lung surfactants and different contributions to thin film stability. Hermans E; Bhamla MS; Kao P; Fuller GG; Vermant J Soft Matter; 2015 Nov; 11(41):8048-57. PubMed ID: 26307946 [TBL] [Abstract][Full Text] [Related]
13. Cholesterol modifies the properties of surface films of dipalmitoylphosphatidylcholine plus pulmonary surfactant-associated protein B or C spread or adsorbed at the air-water interface. Taneva S; Keough KM Biochemistry; 1997 Jan; 36(4):912-22. PubMed ID: 9020791 [TBL] [Abstract][Full Text] [Related]
14. Tensiometric and Phase Domain Behavior of Lung Surfactant on Mucus-like Viscoelastic Hydrogels. Schenck DM; Fiegel J ACS Appl Mater Interfaces; 2016 Mar; 8(9):5917-28. PubMed ID: 26894883 [TBL] [Abstract][Full Text] [Related]
16. Inactivation of pulmonary surfactant due to serum-inhibited adsorption and reversal by hydrophilic polymers: experimental. Taeusch HW; Bernardino de la Serna J; Perez-Gil J; Alonso C; Zasadzinski JA Biophys J; 2005 Sep; 89(3):1769-79. PubMed ID: 15923228 [TBL] [Abstract][Full Text] [Related]
17. Modifying calf lung surfactant by hexadecanol. Alonso C; Bringezu F; Brezesinski G; Waring AJ; Zasadzinski JA Langmuir; 2005 Feb; 21(3):1028-35. PubMed ID: 15667185 [TBL] [Abstract][Full Text] [Related]
18. Biophysical characterization and modeling of lung surfactant components. Ingenito EP; Mark L; Morris J; Espinosa FF; Kamm RD; Johnson M J Appl Physiol (1985); 1999 May; 86(5):1702-14. PubMed ID: 10233138 [TBL] [Abstract][Full Text] [Related]
19. Phase transitions in films of lung surfactant at the air-water interface. Nag K; Perez-Gil J; Ruano ML; Worthman LA; Stewart J; Casals C; Keough KM Biophys J; 1998 Jun; 74(6):2983-95. PubMed ID: 9635752 [TBL] [Abstract][Full Text] [Related]