These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 10658016)

  • 1. An investigation of pulmonary surfactant physicochemical behavior under airway reopening conditions.
    Ghadiali SN; Gaver DP
    J Appl Physiol (1985); 2000 Feb; 88(2):493-506. PubMed ID: 10658016
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The unusual symmetric reopening effect induced by pulmonary surfactant.
    Yamaguchi E; Giannetti MJ; Van Houten MJ; Forouzan O; Shevkoplyas SS; Gaver DP
    J Appl Physiol (1985); 2014 Mar; 116(6):635-44. PubMed ID: 24458752
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Epithelial cell deformation during surfactant-mediated airway reopening: a theoretical model.
    Naire S; Jensen OE
    J Appl Physiol (1985); 2005 Aug; 99(2):458-71. PubMed ID: 15802368
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanisms of surface-tension-induced epithelial cell damage in a model of pulmonary airway reopening.
    Bilek AM; Dee KC; Gaver DP
    J Appl Physiol (1985); 2003 Feb; 94(2):770-83. PubMed ID: 12433851
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physicochemical effects enhance surfactant transport in pulsatile motion of a semi-infinite bubble.
    Pillert JE; Gaver DP
    Biophys J; 2009 Jan; 96(1):312-27. PubMed ID: 18849416
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structures of pulmonary surfactant films adsorbed to an air-liquid interface in vitro.
    Bachofen H; Gerber U; Gehr P; Amrein M; Schürch S
    Biochim Biophys Acta; 2005 Dec; 1720(1-2):59-72. PubMed ID: 16405864
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of surfactant on the propagation of a semi-infinite bubble through a liquid-filled compliant channel.
    Halpern D; Gaver DP
    J Fluid Mech; 2012 May; 698():125-159. PubMed ID: 22997476
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adsorption of pulmonary surfactant protein D to phospholipid monolayers at the air-water interface.
    Taneva S; Voelker DR; Keough KM
    Biochemistry; 1997 Jul; 36(26):8173-9. PubMed ID: 9201966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic surface tension of surfactant TA: experiments and theory.
    Otis DR; Ingenito EP; Kamm RD; Johnson M
    J Appl Physiol (1985); 1994 Dec; 77(6):2681-8. PubMed ID: 7896607
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Keratin-rhamnolipids and keratin-sodium dodecyl sulfate interactions at the air/water interface.
    Ozdemir G; Sezgin OE
    Colloids Surf B Biointerfaces; 2006 Sep; 52(1):1-7. PubMed ID: 16837174
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A spreading technique for forming film in a captive bubble.
    Putz G; Walch M; Van Eijk M; Haagsman HP
    Biophys J; 1998 Nov; 75(5):2229-39. PubMed ID: 9788918
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lung surfactants and different contributions to thin film stability.
    Hermans E; Bhamla MS; Kao P; Fuller GG; Vermant J
    Soft Matter; 2015 Nov; 11(41):8048-57. PubMed ID: 26307946
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cholesterol modifies the properties of surface films of dipalmitoylphosphatidylcholine plus pulmonary surfactant-associated protein B or C spread or adsorbed at the air-water interface.
    Taneva S; Keough KM
    Biochemistry; 1997 Jan; 36(4):912-22. PubMed ID: 9020791
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tensiometric and Phase Domain Behavior of Lung Surfactant on Mucus-like Viscoelastic Hydrogels.
    Schenck DM; Fiegel J
    ACS Appl Mater Interfaces; 2016 Mar; 8(9):5917-28. PubMed ID: 26894883
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enabling Marangoni flow at air-liquid interfaces through deposition of aerosolized lipid dispersions.
    Stetten AZ; Moraca G; Corcoran TE; Tristram-Nagle S; Garoff S; Przybycien TM; Tilton RD
    J Colloid Interface Sci; 2016 Dec; 484():270-278. PubMed ID: 27623189
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inactivation of pulmonary surfactant due to serum-inhibited adsorption and reversal by hydrophilic polymers: experimental.
    Taeusch HW; Bernardino de la Serna J; Perez-Gil J; Alonso C; Zasadzinski JA
    Biophys J; 2005 Sep; 89(3):1769-79. PubMed ID: 15923228
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modifying calf lung surfactant by hexadecanol.
    Alonso C; Bringezu F; Brezesinski G; Waring AJ; Zasadzinski JA
    Langmuir; 2005 Feb; 21(3):1028-35. PubMed ID: 15667185
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biophysical characterization and modeling of lung surfactant components.
    Ingenito EP; Mark L; Morris J; Espinosa FF; Kamm RD; Johnson M
    J Appl Physiol (1985); 1999 May; 86(5):1702-14. PubMed ID: 10233138
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phase transitions in films of lung surfactant at the air-water interface.
    Nag K; Perez-Gil J; Ruano ML; Worthman LA; Stewart J; Casals C; Keough KM
    Biophys J; 1998 Jun; 74(6):2983-95. PubMed ID: 9635752
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Airway reopening pressure in isolated rat lungs.
    Naureckas ET; Dawson CA; Gerber BS; Gaver DP; Gerber HL; Linehan JH; Solway J; Samsel RW
    J Appl Physiol (1985); 1994 Mar; 76(3):1372-7. PubMed ID: 8005884
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.