These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 10658362)

  • 61. Forced expiration: a test for airflow obstruction in horses.
    Couëtil LL; Rosenthal FS; Simpson CM
    J Appl Physiol (1985); 2000 May; 88(5):1870-9. PubMed ID: 10797152
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Effect of respiratory rate on respiratory patterns in patients with chronic obstructive pulmonary disease.
    Inoue M; Homma T; Aoki H; Sumi M; Ohtsu I; Tomioka S; Hagiya M; Yamashita Y; Hasegawa S
    Intern Med; 1997 Nov; 36(11):771-5. PubMed ID: 9392347
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Effect of nitric oxide inhalation on respiratory system resistance in chronic obstructive pulmonary disease.
    Roger N; Barberà JA; Farré R; Cobos A; Roca J; Rodriguez-Roisin R
    Eur Respir J; 1996 Feb; 9(2):190-5. PubMed ID: 8777949
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Tidal expiratory flow patterns in airflow obstruction.
    Morris MJ; Lane DJ
    Thorax; 1981 Feb; 36(2):135-42. PubMed ID: 7268679
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Alteration in breathing pattern with progression of chronic obstructive pulmonary disease.
    Loveridge B; West P; Kryger MH; Anthonisen NR
    Am Rev Respir Dis; 1986 Nov; 134(5):930-4. PubMed ID: 3777689
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Effects of an external resistance on maximum flow in chronic obstructive lung disease: implications for recognition of coincident upper airway obstruction.
    Robertson DR; Swinburn CR; Stone TN; Gibson GJ
    Thorax; 1989 Jun; 44(6):461-8. PubMed ID: 2763255
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Control of breathing in chronic obstructive pulmonary disease patients at rest and after beta-2 agonist inhalation.
    Appendini L; Molina G; Senis L; Garbagni L
    Respiration; 1991; 58(1):42-8. PubMed ID: 1852981
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Accuracy of tidal breathing measurement of FloRight compared to an ultrasonic flowmeter in infants.
    Petrus NC; Thamrin C; Fuchs O; Frey U
    Pediatr Pulmonol; 2015 Apr; 50(4):380-8. PubMed ID: 24574092
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Expiratory flow-volume curves in mechanically ventilated patients with chronic obstructive pulmonary disease.
    Aerts JG; van den Berg B; Lourens MS; Bogaard JM
    Acta Anaesthesiol Scand; 1999 Mar; 43(3):322-7. PubMed ID: 10081539
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Airflow limitation and breathing strategy in congestive heart failure patients during exercise.
    Schroeder CA; Balfe DL; Khan SS; Mohsenifar Z
    Respiration; 2003; 70(2):137-42. PubMed ID: 12740509
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Tidal breathing analysis in school-age children. Comparison with the parameters of forced expiration.
    Kostianev SS; Marinov BI; Gencova NB; Hodgev VA; Yanev IB
    Folia Med (Plovdiv); 2004; 46(3):32-40. PubMed ID: 15819455
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Diaphragm efficiency estimated as power output relative to activation in chronic obstructive pulmonary disease.
    Finucane KE; Singh B
    J Appl Physiol (1985); 2012 Nov; 113(10):1567-75. PubMed ID: 22995393
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Are tidal breathing indices useful in infant bronchial challenge tests?
    Aston H; Clarke J; Silverman M
    Pediatr Pulmonol; 1994 Apr; 17(4):225-30. PubMed ID: 8208592
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Increased initial flow rate reduces inspiratory work of breathing during pressure support ventilation in patients with exacerbation of chronic obstructive pulmonary disease.
    Bonmarchand G; Chevron V; Chopin C; Jusserand D; Girault C; Moritz F; Leroy J; Pasquis P
    Intensive Care Med; 1996 Nov; 22(11):1147-54. PubMed ID: 9120105
    [TBL] [Abstract][Full Text] [Related]  

  • 75. [Acute effect of lorazepam on respiratory muscles in stable patients with chronic obstructive pulmonary disease].
    Jolly E; Aguirre L; Jorge E; Luna C
    Medicina (B Aires); 1996; 56(5 Pt 1):472-8. PubMed ID: 9239882
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Effect of apparatus dead space on breathing parameters in newborns: "flow-through" versus conventional techniques.
    Schmalisch G; Foitzik B; Wauer RR; Stocks J
    Eur Respir J; 2001 Jan; 17(1):108-14. PubMed ID: 11307739
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Assessment of tidal breathing patterns for monitoring of bronchial obstruction in infants.
    Banovcin P; Seidenberg J; Von der Hardt H
    Pediatr Res; 1995 Aug; 38(2):218-20. PubMed ID: 7478819
    [TBL] [Abstract][Full Text] [Related]  

  • 78. A factor analysis of dyspnea ratings, respiratory muscle strength, and lung function in patients with chronic obstructive pulmonary disease.
    Mahler DA; Harver A
    Am Rev Respir Dis; 1992 Feb; 145(2 Pt 1):467-70. PubMed ID: 1736759
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Role of inspiratory capacity on exercise tolerance in COPD patients with and without tidal expiratory flow limitation at rest.
    Diaz O; Villafranca C; Ghezzo H; Borzone G; Leiva A; Milic-Emil J; Lisboa C
    Eur Respir J; 2000 Aug; 16(2):269-75. PubMed ID: 10968502
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Respiratory mechanics in chest wall disease: implications for expiratory flow limitation during resting breathing.
    Milic-Emili J
    Monaldi Arch Chest Dis; 1993; 48(1):80-2. PubMed ID: 8472070
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.