These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 10658561)
1. New technologies in the use of exhaled breath analysis for biological monitoring. Wilson HK; Monster AC Occup Environ Med; 1999 Nov; 56(11):753-7. PubMed ID: 10658561 [TBL] [Abstract][Full Text] [Related]
2. News from the Breath Analysis Summit 2011. Corradi M; Mutti A J Breath Res; 2012 Jun; 6(2):020201. PubMed ID: 22622266 [TBL] [Abstract][Full Text] [Related]
3. Design and evaluation of an exhaled breath sampler for biological monitoring of organic solvents. Periago JF; Luna A; Morente A; Zambudio A J Appl Toxicol; 1992 Apr; 12(2):91-6. PubMed ID: 1556386 [TBL] [Abstract][Full Text] [Related]
4. Selected ion flow tube: a technique for quantitative trace gas analysis of air and breath. Spanĕl P; Smith D Med Biol Eng Comput; 1996 Nov; 34(6):409-19. PubMed ID: 9039741 [TBL] [Abstract][Full Text] [Related]
5. Selected ion flow tube mass spectrometry (SIFT-MS) for on-line trace gas analysis. Smith D; Spanel P Mass Spectrom Rev; 2005; 24(5):661-700. PubMed ID: 15495143 [TBL] [Abstract][Full Text] [Related]
6. The selected ion flow tube (SIFT)--a novel technique for biological monitoring. Spanĕl P; Rolfe P; Rajan B; Smith D Ann Occup Hyg; 1996 Dec; 40(6):615-26. PubMed ID: 8958769 [TBL] [Abstract][Full Text] [Related]
7. A field method for sampling toluene in end-exhaled air, as a biomarker of occupational exposure: correlation with other exposure indices. Ghittori S; Alessio A; Negri S; Maestri L; Zadra P; Imbriani M Ind Health; 2004 Apr; 42(2):226-34. PubMed ID: 15128173 [TBL] [Abstract][Full Text] [Related]
8. Selected ion flow tube mass spectrometry for on-line trace gas analysis in biology and medicine. Spanĕl P; Smith D Eur J Mass Spectrom (Chichester); 2007; 13(1):77-82. PubMed ID: 17878543 [TBL] [Abstract][Full Text] [Related]
9. Breath analysis. Physiological basis and sampling techniques. Wilson HK Scand J Work Environ Health; 1986 Jun; 12(3):174-92. PubMed ID: 3749832 [TBL] [Abstract][Full Text] [Related]
10. Design and evaluation of a breath-analysis system for biological monitoring of volatile compound. Thrall KD; Callahan PJ; Weitz KK; Edwards JA; Brinkman MC; Kenny DV AIHAJ; 2001; 62(1):28-35. PubMed ID: 11258865 [TBL] [Abstract][Full Text] [Related]
11. Pitfalls in the analysis of volatile breath biomarkers: suggested solutions and SIFT-MS quantification of single metabolites. Smith D; Spanel P J Breath Res; 2015 Apr; 9(2):022001. PubMed ID: 25830501 [TBL] [Abstract][Full Text] [Related]
12. Real-time monitoring of exhaled drugs by mass spectrometry. Berchtold C; Bosilkovska M; Daali Y; Walder B; Zenobi R Mass Spectrom Rev; 2014; 33(5):394-413. PubMed ID: 24272872 [TBL] [Abstract][Full Text] [Related]
13. A review of the USEPA's single breath canister (SBC) method for exhaled volatile organic biomarkers. Lindstrom AB; Pleil JD Biomarkers; 2002; 7(3):189-208. PubMed ID: 12141064 [TBL] [Abstract][Full Text] [Related]
14. Application of thermal desorption to the biological monitoring of organic compounds in exhaled breath. Periago JF; Prado C; Ibarra I; Tortosa J J Chromatogr A; 1993 Dec; 657(1):147-53. PubMed ID: 8111475 [TBL] [Abstract][Full Text] [Related]
15. The novel selected-ion flow tube approach to trace gas analysis of air and breath. Smith D; Spanel P Rapid Commun Mass Spectrom; 1996; 10(10):1183-98. PubMed ID: 8759327 [TBL] [Abstract][Full Text] [Related]
16. Biological monitoring of midwives' exposure to N(2)O using the Bio-VOC breath sampler. Henderson KA; Matthews IP J Expo Anal Environ Epidemiol; 2002 Sep; 12(5):309-12. PubMed ID: 12198578 [TBL] [Abstract][Full Text] [Related]
17. Recent policy and technical developments in biological monitoring in the United Kingdom. Wilson HK Sci Total Environ; 1997 Jun; 199(1-2):191-6. PubMed ID: 9200863 [TBL] [Abstract][Full Text] [Related]
18. Sorbent-based sampling methods for volatile and semi-volatile organic compounds in air. Part 2. Sorbent selection and other aspects of optimizing air monitoring methods. Woolfenden E J Chromatogr A; 2010 Apr; 1217(16):2685-94. PubMed ID: 20106482 [TBL] [Abstract][Full Text] [Related]
19. Exhaled breath condensate: determination of non-volatile compounds and their potential for clinical diagnosis and monitoring. A review. Kubáň P; Foret F Anal Chim Acta; 2013 Dec; 805():1-18. PubMed ID: 24296139 [TBL] [Abstract][Full Text] [Related]
20. Human breath metabolomics using an optimized non-invasive exhaled breath condensate sampler. Zamuruyev KO; Aksenov AA; Pasamontes A; Brown JF; Pettit DR; Foutouhi S; Weimer BC; Schivo M; Kenyon NJ; Delplanque JP; Davis CE J Breath Res; 2016 Dec; 11(1):016001. PubMed ID: 28004639 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]