BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 10658833)

  • 1. Competition for enzymes in metabolic pathways: implications for optimal distributions of enzyme concentrations and for the distribution of flux control.
    Klipp E; Heinrich R
    Biosystems; 1999 Dec; 54(1-2):1-14. PubMed ID: 10658833
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The principle of flux minimization and its application to estimate stationary fluxes in metabolic networks.
    Holzhütter HG
    Eur J Biochem; 2004 Jul; 271(14):2905-22. PubMed ID: 15233787
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic states with maximal specific rate carry flux through an elementary flux mode.
    Wortel MT; Peters H; Hulshof J; Teusink B; Bruggeman FJ
    FEBS J; 2014 Mar; 281(6):1547-55. PubMed ID: 24460934
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An extension to the metabolic control theory taking into account correlations between enzyme concentrations.
    Lion S; Gabriel F; Bost B; Fiévet J; Dillmann C; de Vienne D
    Eur J Biochem; 2004 Nov; 271(22):4375-91. PubMed ID: 15560779
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sequential activation of metabolic pathways: a dynamic optimization approach.
    Oyarzún DA; Ingalls BP; Middleton RH; Kalamatianos D
    Bull Math Biol; 2009 Nov; 71(8):1851-72. PubMed ID: 19412635
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic control and its analysis. Extensions to the theory and matrix method.
    Sauro HM; Small JR; Fell DA
    Eur J Biochem; 1987 May; 165(1):215-21. PubMed ID: 3569295
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control analysis of unbranched enzymatic chains in states of maximal activity.
    Heinrich R; Klipp E
    J Theor Biol; 1996 Oct; 182(3):243-52. PubMed ID: 8944155
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Concerning the measurement of flux control coefficients by enzyme titration. Steady states, quasi-steady-states, and the role of time in control analytical experiments.
    Giersch C
    Eur J Biochem; 1995 Aug; 231(3):587-92. PubMed ID: 7649157
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Theory of metabolism regulation: a complete system of equations for regulation coefficients].
    Kholodenko BN; Erlikh LI
    Biofizika; 1989; 34(5):802-7. PubMed ID: 2611277
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of metabolic flux distribution from gene expression data based on the flux minimization principle.
    Song HS; Reifman J; Wallqvist A
    PLoS One; 2014; 9(11):e112524. PubMed ID: 25397773
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The evolution of control and distribution of adaptive mutations in a metabolic pathway.
    Wright KM; Rausher MD
    Genetics; 2010 Feb; 184(2):483-502. PubMed ID: 19966064
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control analysis of metabolic networks. 1. Homogeneous functions and the summation theorems for control coefficients.
    Giersch C
    Eur J Biochem; 1988 Jun; 174(3):509-13. PubMed ID: 3391169
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Protein Cost of Metabolic Fluxes: Prediction from Enzymatic Rate Laws and Cost Minimization.
    Noor E; Flamholz A; Bar-Even A; Davidi D; Milo R; Liebermeister W
    PLoS Comput Biol; 2016 Nov; 12(11):e1005167. PubMed ID: 27812109
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control-pattern analysis of metabolic pathways. Flux and concentration control in linear pathways.
    Hofmeyr JH
    Eur J Biochem; 1989 Dec; 186(1-2):343-54. PubMed ID: 2598934
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Delving deeper: Relating the behaviour of a metabolic system to the properties of its components using symbolic metabolic control analysis.
    Christensen CD; Hofmeyr JS; Rohwer JM
    PLoS One; 2018; 13(11):e0207983. PubMed ID: 30485345
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards kinetic modeling of genome-scale metabolic networks without sacrificing stoichiometric, thermodynamic and physiological constraints.
    Chakrabarti A; Miskovic L; Soh KC; Hatzimanikatis V
    Biotechnol J; 2013 Sep; 8(9):1043-57. PubMed ID: 23868566
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integration of enzyme activities into metabolic flux distributions by elementary mode analysis.
    Kurata H; Zhao Q; Okuda R; Shimizu K
    BMC Syst Biol; 2007 Jul; 1():31. PubMed ID: 17640350
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The generalized flux-minimization method and its application to metabolic networks affected by enzyme deficiencies.
    Holzhütter HG
    Biosystems; 2006; 83(2-3):98-107. PubMed ID: 16229937
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uncovering metabolic objectives pursued by changes of enzyme levels.
    Hoffmann S; Holzhütter HG
    Ann N Y Acad Sci; 2009 Mar; 1158():57-70. PubMed ID: 19348632
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Steady-state analysis of metabolic pathways: comparing the double modulation method and the lin-log approach.
    Link H; Weuster-Botz D
    Metab Eng; 2007; 9(5-6):433-41. PubMed ID: 17889583
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.