These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 10659433)

  • 1. Situation assessment of glaucoma using a hybrid fuzzy neural network.
    Zahlmann G; Scherf M; Wegner A; Obermaier M; Mertz M
    IEEE Eng Med Biol Mag; 2000; 19(1):84-91. PubMed ID: 10659433
    [No Abstract]   [Full Text] [Related]  

  • 2. Hybrid fuzzy image processing for situation assessment.
    Zahlmann G; Kochner B; Ugi I; Schuhmann D; Liesenfeld B; Wegner A; Obermaier M; Mertz M
    IEEE Eng Med Biol Mag; 2000; 19(1):76-83. PubMed ID: 10659432
    [No Abstract]   [Full Text] [Related]  

  • 3. Glaucoma diagnostics.
    Geimer SA
    Acta Ophthalmol; 2013 Feb; 91 Thesis 1():1-32. PubMed ID: 23384049
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Can Visual Field Progression be Predicted by Confocal Scanning Laser Ophthalmoscopic Imaging of the Optic Nerve Head in Glaucoma? (An American Ophthalmological Society Thesis).
    Danias J; Serle J
    Trans Am Ophthalmol Soc; 2015; 113():T4. PubMed ID: 26549913
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of clinicians and an artificial neural network regarding accuracy and certainty in performance of visual field assessment for the diagnosis of glaucoma.
    Andersson S; Heijl A; Bizios D; Bengtsson B
    Acta Ophthalmol; 2013 Aug; 91(5):413-7. PubMed ID: 22583841
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optic disc cupping associated with neurosyphilis.
    Mansberger SL; MacKenzie PJ; Falardeau J
    J Glaucoma; 2013 Feb; 22(2):80-3. PubMed ID: 21946555
    [No Abstract]   [Full Text] [Related]  

  • 7. Adenwala oration. "The effect of cup disc ratio on intraocular pressure and visual field in diagnosing pre-glaucomatous condition".
    Avasthi P
    Indian J Ophthalmol; 1981 Oct; 29(3):137-45. PubMed ID: 7348185
    [No Abstract]   [Full Text] [Related]  

  • 8. Comparison of event-based analysis of glaucoma progression assessed subjectively on visual fields and retinal nerve fibre layer attenuation measured by optical coherence tomography.
    Kaushik S; Mulkutkar S; Pandav SS; Verma N; Gupta A
    Int Ophthalmol; 2015 Feb; 35(1):95-106. PubMed ID: 25502985
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Defining the structure/function relationship in glaucoma.
    Graham S
    Clin Exp Ophthalmol; 2012; 40(4):337-8. PubMed ID: 22697054
    [No Abstract]   [Full Text] [Related]  

  • 10. Sensitivity and specificity of optic disc parameters in chronic glaucoma.
    Damms T; Dannheim F
    Invest Ophthalmol Vis Sci; 1993 Jun; 34(7):2246-50. PubMed ID: 8505205
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diagnostic power of optic disc morphology, peripapillary retinal nerve fiber layer thickness, and macular inner retinal layer thickness in glaucoma diagnosis with fourier-domain optical coherence tomography.
    Huang JY; Pekmezci M; Mesiwala N; Kao A; Lin S
    J Glaucoma; 2011 Feb; 20(2):87-94. PubMed ID: 20577117
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preservation of myelinated nerve fibres in advanced glaucoma.
    Toh T; Ruddle JB; Coote MA; Crowston JG
    Clin Exp Ophthalmol; 2011 Jul; 39(5):473-8. PubMed ID: 21631660
    [No Abstract]   [Full Text] [Related]  

  • 13. Diagnostic performance of optical coherence tomography ganglion cell--inner plexiform layer thickness measurements in early glaucoma.
    Mwanza JC; Budenz DL; Godfrey DG; Neelakantan A; Sayyad FE; Chang RT; Lee RK
    Ophthalmology; 2014 Apr; 121(4):849-54. PubMed ID: 24393348
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Relative Odds of Progressing by Structural and Functional Tests in Glaucoma.
    Abe RY; Diniz-Filho A; Zangwill LM; Gracitelli CP; Marvasti AH; Weinreb RN; Baig S; Medeiros FA
    Invest Ophthalmol Vis Sci; 2016 Jul; 57(9):OCT421-8. PubMed ID: 27409501
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Challenge of Detecting Glaucoma Progression.
    Tanna AP
    Ophthalmology; 2017 Dec; 124(12S):S49-S50. PubMed ID: 29157361
    [No Abstract]   [Full Text] [Related]  

  • 16. Computerized perimetry in glaucoma management.
    Heijl A
    Acta Ophthalmol (Copenh); 1989 Feb; 67(1):1-12. PubMed ID: 2672693
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interpretation of automated perimetry for glaucoma by neural network.
    Goldbaum MH; Sample PA; White H; Côlt B; Raphaelian P; Fechtner RD; Weinreb RN
    Invest Ophthalmol Vis Sci; 1994 Aug; 35(9):3362-73. PubMed ID: 8056511
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neural networks to identify glaucoma with structural and functional measurements.
    Brigatti L; Hoffman D; Caprioli J
    Am J Ophthalmol; 1996 May; 121(5):511-21. PubMed ID: 8610794
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regression analysis of visual field progression in low tension glaucoma.
    Noureddin BN; Poinoosawmy D; Fietzke FW; Hitchings RA
    Br J Ophthalmol; 1991 Aug; 75(8):493-5. PubMed ID: 1873271
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How does resetting intraocular pressure help optic nerve function?
    Spaeth GL; Marques Pereira ML
    Eye (Lond); 2000 Jun; 14 ( Pt 3B)():476-87. PubMed ID: 11026977
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.