These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 10659787)

  • 1. Identification of wheat and tritordeum chromosomes by genomic in situ hybridization using total Hordeum chilense DNA as probe.
    Gonzalez MJ; Cabrera A
    Genome; 1999 Dec; 42(6):1194-200. PubMed ID: 10659787
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular cytogenetic analysis of durum wheat x tritordeum hybrids.
    Lima-Brito J; Guedes-Pinto H; Harrison GE; Heslop-Harrison JS
    Genome; 1997 Jun; 40(3):362-9. PubMed ID: 18464834
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of intergenomic translocations involving wheat, Hordeum vulgare and Hordeum chilense chromosomes by FISH.
    Prieto P; Ramírez MC; Ballesteros J; Cabrera A
    Hereditas; 2001; 135(2-3):171-4. PubMed ID: 12152330
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of Hordeum chilense chromosomes by C-banding and in situ hybridization using highly repeated DNA probes.
    Cabrera A; Friebe B; Jiang J; Gill BS
    Genome; 1995 Jun; 38(3):435-42. PubMed ID: 18470181
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-throughput genotyping of wheat-barley amphiploids utilising diversity array technology (DArT).
    Castillo A; Ramírez MC; Martín AC; Kilian A; Martín A; Atienza SG
    BMC Plant Biol; 2013 Jun; 13():87. PubMed ID: 23725040
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification and comparison of individual chromosomes of three accessions of Hordeum chilense, Hordeum vulgare, and Triticum aestivum by FISH.
    Rey MD; Moore G; Martín AC
    Genome; 2018 Jun; 61(6):387-396. PubMed ID: 29544080
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative FISH mapping of two highly repetitive DNA sequences in Hordeum chilense (Roem. et Schult.).
    Marín S; Martín A; Barro F
    Genome; 2008 Aug; 51(8):580-8. PubMed ID: 18650948
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Introgression of wheat chromosome 2D or 5D into tritordeum leads to free-threshing habit.
    Atienza SG; Martín AC; Martín A
    Genome; 2007 Nov; 50(11):994-1000. PubMed ID: 18059545
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular characterization and chromosome location of repeated DNA sequences in Hordeum species and in the amphiploid tritordeum (x Tritordeum Ascherson et Graebner).
    Ferrer E; Loarce Y; Hueros G
    Genome; 1995 Oct; 38(5):850-7. PubMed ID: 8536999
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chromosomal distribution of telomeric and telomeric-associated sequences in Hordeum chilense by in situ hybridization.
    Prieto P; Martín A; Cabrera A
    Hereditas; 2004; 141(2):122-7. PubMed ID: 15660972
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Constructing an alternative wheat karyotype using barley genomic DNA.
    Icsó D; Molnár-Láng M; Linc G
    J Appl Genet; 2015 Feb; 56(1):45-8. PubMed ID: 25027628
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In-situ comparative mapping (ISCM) of Glu-1 loci in Triticum and Hordeum.
    Cabrera A; Martin A; Barro F
    Chromosome Res; 2002; 10(1):49-54. PubMed ID: 11863070
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genomic differentiation of Hordeum chilense from H. vulgare as revealed by repetitive and EST sequences.
    Hagras AA; Kishii M; Tanaka H; Sato K; Tsujimoto H
    Genes Genet Syst; 2005 Jun; 80(3):147-59. PubMed ID: 16172528
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Meiotic pairing of the amphiploid Hordeum chilense X Triticum turgidum conv. durum studied by means of Giemsa C-banding technique.
    Fernandez JA; Gonzalez JM; Jouve N
    Theor Appl Genet; 1985 Apr; 70(1):85-91. PubMed ID: 24254119
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cytogenetics of Hordeum chilense: current status and considerations with reference to breeding.
    Martín A; Cabrera A
    Cytogenet Genome Res; 2005; 109(1-3):378-84. PubMed ID: 15753600
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cloning and characterization of a gamma-3 hordein mRNA (cDNA) from Hordeum chilense (Roem. et Schult.).
    Pistón F; Dorado G; Martín A; Barro F
    Theor Appl Genet; 2004 May; 108(7):1359-65. PubMed ID: 14747917
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative genomic analysis and expression of the APETALA2-like genes from barley, wheat, and barley-wheat amphiploids.
    Gil-Humanes J; Pistón F; Martín A; Barro F
    BMC Plant Biol; 2009 May; 9():66. PubMed ID: 19480686
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of T. aestivum L.-H. californicum alien chromosome lines and assignment of homoeologous groups of Hordeum californicum chromosomes.
    Fang Y; Yuan J; Wang Z; Wang H; Xiao J; Yang Z; Zhang R; Qi Z; Xu W; Hu L; Wang XE
    J Genet Genomics; 2014 Aug; 41(8):439-47. PubMed ID: 25160976
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transgene integration and chromosome alterations in two transgenic lines of tritordeum.
    Barro F; Martín A; Cabrera A
    Chromosome Res; 2003; 11(6):565-72. PubMed ID: 14516065
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chromosomal location of structural genes controlling isozymes in Hordeum chilense : 3. Esterases, glutamate oxaloacetate transaminase and phosphoglucomutase.
    Fernández JA; Jouve N
    Theor Appl Genet; 1987 Sep; 73(5):690-8. PubMed ID: 24241192
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.