These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 10659844)

  • 1. Natural methyl bromide and methyl chloride emissions from coastal salt marshes.
    Rhew RC; Miller BR; Weiss RF
    Nature; 2000 Jan; 403(6767):292-5. PubMed ID: 10659844
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A strong source of methyl chloride to the atmosphere from tropical coastal land.
    Yokouchi Y; Noijiri Y; Barrie LA; Toom-Sauntry D; Machida T; Inuzuka Y; Akimoto H; Li HJ; Fujinuma Y; Aoki S
    Nature; 2000 Jan; 403(6767):295-8. PubMed ID: 10659845
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Halocarbons produced by natural oxidation processes during degradation of organic matter.
    Keppler F; Eiden R; Niedan V; Pracht J; Schöler HF
    Nature; 2000 Jan; 403(6767):298-301. PubMed ID: 10659846
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A selective unsaturated hydrocarbon subtraction technique for stable carbon isotopic analysis of atmospheric methyl chloride, methyl bromide, and C2-C5 saturated hydrocarbons using continuous-flow isotope ratio mass spectrometry.
    Komatsu DD; Tsunogai U; Yamaguchi J; Nakagawa F
    Rapid Commun Mass Spectrom; 2005; 19(4):477-83. PubMed ID: 15666317
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measuring simultaneous production and consumption fluxes of methyl chloride and methyl bromide in annual temperate grasslands.
    Rhew RC; Abel T
    Environ Sci Technol; 2007 Nov; 41(22):7837-43. PubMed ID: 18075096
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shifts from methyl chloride sink to source functions within a coastal salt marsh in eastern China: an examination of the effects of biomass burning prohibition policies.
    Wang J; Wang J
    Environ Sci Pollut Res Int; 2018 Mar; 25(7):6352-6363. PubMed ID: 29247420
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Methyl Chloride and Methyl Bromide Production and Consumption in Coastal Antarctic Tundra Soils Subject to Sea Animal Activities.
    Zhang W; Jiao Y; Zhu R; Rhew RC
    Environ Sci Technol; 2020 Oct; 54(20):13354-13363. PubMed ID: 32935983
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chloride methylation by plant pectin: an efficient environmentally significant process.
    Hamilton JT; McRoberts WC; Keppler F; Kalin RM; Harper DB
    Science; 2003 Jul; 301(5630):206-9. PubMed ID: 12855805
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strong emission of methyl chloride from tropical plants.
    Yokouchi Y; Ikeda M; Inuzuka Y; Yukawa T
    Nature; 2002 Mar; 416(6877):163-5. PubMed ID: 11894090
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The distinctive isotopic signature of plant-derived chloromethane: possible application in constraining the atmospheric chloromethane budget.
    Harper DB; Hamilton JT; Ducrocq V; Kennedy JT; Downey A; Kalin RM
    Chemosphere; 2003 Jul; 52(2):433-6. PubMed ID: 12738266
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sources and sinks of chloromethane in a salt marsh ecosystem: constraints from concentration and stable isotope measurements of laboratory incubation experiments.
    Keppler F; Röhling AN; Jaeger N; Schroll M; Hartmann SC; Greule M
    Environ Sci Process Impacts; 2020 Mar; 22(3):627-641. PubMed ID: 32080692
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Methyl bromide: ocean sources, ocean sinks, and climate sensitivity.
    Anbar AD; Yung YL; Chavez FP
    Global Biogeochem Cycles; 1996 Mar; 10(1):175-90. PubMed ID: 11539402
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Description of toluene inhibition of methyl bromide biodegradation in seawater and isolation of a marine toluene oxidizer that degrades methyl bromide.
    Goodwin KD; Tokarczyk R; Stephens FC; Saltzman ES
    Appl Environ Microbiol; 2005 Jul; 71(7):3495-503. PubMed ID: 16000753
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Atmospheric chemistry. Better budgets for methyl halides.
    Butler JH
    Nature; 2000 Jan; 403(6767):260-1. PubMed ID: 10681236
    [No Abstract]   [Full Text] [Related]  

  • 15. A pilot study of methyl chloride emissions from tropical woodrot fungi.
    Moore RM; Gut A; Andreae MO
    Chemosphere; 2005 Jan; 58(2):221-5. PubMed ID: 15571754
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Abiotic methyl bromide formation from vegetation, and its strong dependence on temperature.
    Wishkerman A; Gebhardt S; McRoberts CW; Hamilton JT; Williams J; Keppler F
    Environ Sci Technol; 2008 Sep; 42(18):6837-42. PubMed ID: 18853797
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of copper(II)-based chemicals induces CH
    Jiao Y; Zhang W; Kim JYR; Deventer MJ; Vollering J; Rhew RC
    Nat Commun; 2022 Jan; 13(1):47. PubMed ID: 35013262
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methyl chloride and methyl bromide emissions from baking: an unrecognized anthropogenic source.
    Thornton BF; Horst A; Carrizo D; Holmstrand H
    Sci Total Environ; 2016 May; 551-552():327-33. PubMed ID: 26878644
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Emissions of methyl halides and methane from rice paddies.
    Redeker KR; Wang N; Low JC; McMillan A; Tyler SC; Cicerone RJ
    Science; 2000 Nov; 290(5493):966-9. PubMed ID: 11062125
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Europe's terrestrial biosphere absorbs 7 to 12% of European anthropogenic CO2 emissions.
    Janssens IA; Freibauer A; Ciais P; Smith P; Nabuurs GJ; Folberth G; Schlamadinger B; Hutjes RW; Ceulemans R; Schulze ED; Valentini R; Dolman AJ
    Science; 2003 Jun; 300(5625):1538-42. PubMed ID: 12764201
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.