These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 10659845)

  • 1. A strong source of methyl chloride to the atmosphere from tropical coastal land.
    Yokouchi Y; Noijiri Y; Barrie LA; Toom-Sauntry D; Machida T; Inuzuka Y; Akimoto H; Li HJ; Fujinuma Y; Aoki S
    Nature; 2000 Jan; 403(6767):295-8. PubMed ID: 10659845
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Natural methyl bromide and methyl chloride emissions from coastal salt marshes.
    Rhew RC; Miller BR; Weiss RF
    Nature; 2000 Jan; 403(6767):292-5. PubMed ID: 10659844
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strong emission of methyl chloride from tropical plants.
    Yokouchi Y; Ikeda M; Inuzuka Y; Yukawa T
    Nature; 2002 Mar; 416(6877):163-5. PubMed ID: 11894090
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of methyl chloride-emitting plants and atmospheric measurements on a subtropical island.
    Yokouchi Y; Saito T; Ishigaki C; Aramoto M
    Chemosphere; 2007 Sep; 69(4):549-53. PubMed ID: 17462706
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shifts from methyl chloride sink to source functions within a coastal salt marsh in eastern China: an examination of the effects of biomass burning prohibition policies.
    Wang J; Wang J
    Environ Sci Pollut Res Int; 2018 Mar; 25(7):6352-6363. PubMed ID: 29247420
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The distinctive isotopic signature of plant-derived chloromethane: possible application in constraining the atmospheric chloromethane budget.
    Harper DB; Hamilton JT; Ducrocq V; Kennedy JT; Downey A; Kalin RM
    Chemosphere; 2003 Jul; 52(2):433-6. PubMed ID: 12738266
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A pilot study of methyl chloride emissions from tropical woodrot fungi.
    Moore RM; Gut A; Andreae MO
    Chemosphere; 2005 Jan; 58(2):221-5. PubMed ID: 15571754
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chloride methylation by plant pectin: an efficient environmentally significant process.
    Hamilton JT; McRoberts WC; Keppler F; Kalin RM; Harper DB
    Science; 2003 Jul; 301(5630):206-9. PubMed ID: 12855805
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long series relationships between global interannual CO2 increment and climate: evidence for stability and change in role of the tropical and boreal-temperate zones.
    Adams JM; Piovesan G
    Chemosphere; 2005 Jun; 59(11):1595-612. PubMed ID: 15878607
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbon isotope ratios for chloromethane of biological origin: potential tool in determining biological emissions.
    Harper DB; Kalin RM; Hamilton JT; Lamb C
    Environ Sci Technol; 2001 Sep; 35(18):3616-9. PubMed ID: 11783636
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atmospheric chemistry. Better budgets for methyl halides.
    Butler JH
    Nature; 2000 Jan; 403(6767):260-1. PubMed ID: 10681236
    [No Abstract]   [Full Text] [Related]  

  • 12. Multiannual observations of acetone, methanol, and acetaldehyde in remote tropical atlantic air: implications for atmospheric OVOC budgets and oxidative capacity.
    Read KA; Carpenter LJ; Arnold SR; Beale R; Nightingale PD; Hopkins JR; Lewis AC; Lee JD; Mendes L; Pickering SJ
    Environ Sci Technol; 2012 Oct; 46(20):11028-39. PubMed ID: 22963451
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Large tundra methane burst during onset of freezing.
    Mastepanov M; Sigsgaard C; Dlugokencky EJ; Houweling S; Ström L; Tamstorf MP; Christensen TR
    Nature; 2008 Dec; 456(7222):628-30. PubMed ID: 19052625
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sources and sinks of chloromethane in a salt marsh ecosystem: constraints from concentration and stable isotope measurements of laboratory incubation experiments.
    Keppler F; Röhling AN; Jaeger N; Schroll M; Hartmann SC; Greule M
    Environ Sci Process Impacts; 2020 Mar; 22(3):627-641. PubMed ID: 32080692
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Future carbon balance of China's forests under climate change and increasing CO2.
    Ju WM; Chen JM; Harvey D; Wang S
    J Environ Manage; 2007 Nov; 85(3):538-62. PubMed ID: 17187919
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Large-scale controls of methanogenesis inferred from methane and gravity spaceborne data.
    Bloom AA; Palmer PI; Fraser A; Reay DS; Frankenberg C
    Science; 2010 Jan; 327(5963):322-5. PubMed ID: 20075250
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Halocarbons produced by natural oxidation processes during degradation of organic matter.
    Keppler F; Eiden R; Niedan V; Pracht J; Schöler HF
    Nature; 2000 Jan; 403(6767):298-301. PubMed ID: 10659846
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complex seasonal patterns of primary producers at the land-sea interface.
    Cloern JE; Jassby AD
    Ecol Lett; 2008 Dec; 11(12):1294-303. PubMed ID: 18793308
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Net carbon dioxide losses of northern ecosystems in response to autumn warming.
    Piao S; Ciais P; Friedlingstein P; Peylin P; Reichstein M; Luyssaert S; Margolis H; Fang J; Barr A; Chen A; Grelle A; Hollinger DY; Laurila T; Lindroth A; Richardson AD; Vesala T
    Nature; 2008 Jan; 451(7174):49-52. PubMed ID: 18172494
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Indirect radiative forcing of climate change through ozone effects on the land-carbon sink.
    Sitch S; Cox PM; Collins WJ; Huntingford C
    Nature; 2007 Aug; 448(7155):791-4. PubMed ID: 17653194
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.