BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

622 related articles for article (PubMed ID: 10659851)

  • 1. Glutamate release in severe brain ischaemia is mainly by reversed uptake.
    Rossi DJ; Oshima T; Attwell D
    Nature; 2000 Jan; 403(6767):316-21. PubMed ID: 10659851
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sequential release of GABA by exocytosis and reversed uptake leads to neuronal swelling in simulated ischemia of hippocampal slices.
    Allen NJ; Rossi DJ; Attwell D
    J Neurosci; 2004 Apr; 24(15):3837-49. PubMed ID: 15084665
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Knocking out the glial glutamate transporter GLT-1 reduces glutamate uptake but does not affect hippocampal glutamate dynamics in early simulated ischaemia.
    Hamann M; Rossi DJ; Marie H; Attwell D
    Eur J Neurosci; 2002 Jan; 15(2):308-14. PubMed ID: 11849297
    [TBL] [Abstract][Full Text] [Related]  

  • 4. N-methyl-D-aspartate autoreceptors respond to low and high agonist concentrations by facilitating, respectively, exocytosis and carrier-mediated release of glutamate in rat hippocampus.
    Luccini E; Musante V; Neri E; Raiteri M; Pittaluga A
    J Neurosci Res; 2007 Dec; 85(16):3657-65. PubMed ID: 17671992
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neuronal glutamate transporters limit activation of NMDA receptors by neurotransmitter spillover on CA1 pyramidal cells.
    Diamond JS
    J Neurosci; 2001 Nov; 21(21):8328-38. PubMed ID: 11606620
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Astrocytic control of synaptic NMDA receptors.
    Lee CJ; Mannaioni G; Yuan H; Woo DH; Gingrich MB; Traynelis SF
    J Physiol; 2007 Jun; 581(Pt 3):1057-81. PubMed ID: 17412766
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cooperation between independent hippocampal synapses is controlled by glutamate uptake.
    Arnth-Jensen N; Jabaudon D; Scanziani M
    Nat Neurosci; 2002 Apr; 5(4):325-31. PubMed ID: 11896395
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A plateau potential mediated by the activation of extrasynaptic NMDA receptors in rat hippocampal CA1 pyramidal neurons.
    Suzuki T; Kodama S; Hoshino C; Izumi T; Miyakawa H
    Eur J Neurosci; 2008 Aug; 28(3):521-34. PubMed ID: 18702724
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cerebroside-A provides potent neuroprotection after cerebral ischaemia through reducing glutamate release and Ca²⁺ influx of NMDA receptors.
    Li L; Yang R; Sun K; Bai Y; Zhang Z; Zhou L; Qi Z; Qi J; Chen L
    Int J Neuropsychopharmacol; 2012 May; 15(4):497-507. PubMed ID: 21557879
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabotropic glutamate receptor 1 activity generates persistent, N-methyl-D-aspartate receptor-dependent depression of hippocampal pyramidal cell excitability.
    Clement JP; Randall AD; Brown JT
    Eur J Neurosci; 2009 Jun; 29(12):2347-62. PubMed ID: 19490024
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of pannexin hemichannels in the anoxic depolarization of hippocampal pyramidal cells.
    Madry C; Haglerød C; Attwell D
    Brain; 2010 Dec; 133(Pt 12):3755-63. PubMed ID: 20940167
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extrasynaptic glutamate release through cystine/glutamate antiporter contributes to ischemic damage.
    Soria FN; Pérez-Samartín A; Martin A; Gona KB; Llop J; Szczupak B; Chara JC; Matute C; Domercq M
    J Clin Invest; 2014 Aug; 124(8):3645-55. PubMed ID: 25036707
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulated ischaemia induces Ca2+-independent glutamatergic vesicle release through actin filament depolymerization in area CA1 of the hippocampus.
    Andrade AL; Rossi DJ
    J Physiol; 2010 May; 588(Pt 9):1499-514. PubMed ID: 20211977
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extracellular glutamate concentration in hippocampal slice.
    Herman MA; Jahr CE
    J Neurosci; 2007 Sep; 27(36):9736-41. PubMed ID: 17804634
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spontaneous glutamate release controls NT-3-dependent development of hippocampal calbindin-D(28k) phenotype through activation of sodium channels ex vivo.
    Pieraut S; Boukhaddaoui H; Scamps F; Dayanithi G; Sieso V; Valmier J
    Eur J Neurosci; 2007 May; 25(9):2629-39. PubMed ID: 17561837
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GMP prevents excitotoxicity mediated by NMDA receptor activation but not by reversal activity of glutamate transporters in rat hippocampal slices.
    Molz S; Tharine DC; Decker H; Tasca CI
    Brain Res; 2008 Sep; 1231():113-20. PubMed ID: 18655777
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of the GLT-1 subtype of glutamate transporter in glutamate homeostasis: the GLT-1-preferring inhibitor WAY-855 produces marginal neurotoxicity in the rat hippocampus.
    Selkirk JV; Nottebaum LM; Vana AM; Verge GM; Mackay KB; Stiefel TH; Naeve GS; Pomeroy JE; Petroski RE; Moyer J; Dunlop J; Foster AC
    Eur J Neurosci; 2005 Jun; 21(12):3217-28. PubMed ID: 16026460
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neuronal glutamate transporters regulate synaptic transmission in single synapses on CA1 hippocampal neurons.
    Kondratskaya E; Shin MC; Akaike N
    Brain Res Bull; 2010 Jan; 81(1):53-60. PubMed ID: 19665527
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fast removal of synaptic glutamate by postsynaptic transporters.
    Auger C; Attwell D
    Neuron; 2000 Nov; 28(2):547-58. PubMed ID: 11144363
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Astrocytic glutamate release-induced transient depolarization and epileptiform discharges in hippocampal CA1 pyramidal neurons.
    Kang N; Xu J; Xu Q; Nedergaard M; Kang J
    J Neurophysiol; 2005 Dec; 94(6):4121-30. PubMed ID: 16162834
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 32.