These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 1066042)

  • 1. Optimizing anterior and canine retraction.
    Burstone CJ; Koenig HA
    Am J Orthod; 1976 Jul; 70(1):1-19. PubMed ID: 1066042
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical simulations of canine retraction with T-loop springs based on the updated moment-to-force ratio.
    Kojima Y; Fukui H
    Eur J Orthod; 2012 Feb; 34(1):10-8. PubMed ID: 21135033
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomechanical design and clinical evaluation of a new canine-retraction spring.
    Gjessing P
    Am J Orthod; 1985 May; 87(5):353-62. PubMed ID: 3857860
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomechanical investigation of the hybrid retraction spring.
    Sander FG
    J Orofac Orthop; 2000; 61(5):341-51. PubMed ID: 11037686
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A numerical simulation of orthodontic tooth movement produced by a canine retraction spring.
    Kojima Y; Mizuno T; Umemura S; Fukui H
    Dent Mater J; 2007 Jul; 26(4):561-7. PubMed ID: 17886461
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A parametric study of the force/moment systems produced by T-loop retraction springs.
    Faulkner MG; Fuchshuber P; Haberstock D; Mioduchowski A
    J Biomech; 1989; 22(6-7):637-47. PubMed ID: 2808446
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mesial or distal to canine: Which is better for the position of closing loops? Analysis of tooth movements based on numerical simulation.
    Jinnai S; Hamanaka R; Komaki H; Kuga D; Yamaguchi R; Tominaga JY; Koga Y; Yoshida N
    Am J Orthod Dentofacial Orthop; 2023 May; 163(5):645-655. PubMed ID: 36610853
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Load system of segmental T-loops for canine retraction.
    Xia Z; Chen J; Jiangc F; Li S; Viecilli RF; Liu SY
    Am J Orthod Dentofacial Orthop; 2013 Oct; 144(4):548-56. PubMed ID: 24075663
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Testing force systems and biomechanics--measured tooth movements from differential moment closing loops.
    Kuhlberg AJ; Priebe D
    Angle Orthod; 2003 Jun; 73(3):270-80. PubMed ID: 12828435
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Superelastic nickel titanium alloy retraction springs--an experimental investigation of force systems.
    Bourauel C; Drescher D; Ebling J; Broome D; Kanarachos A
    Eur J Orthod; 1997 Oct; 19(5):491-500. PubMed ID: 9386335
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimizing the design of preactivated titanium T-loop springs with Loop software.
    Martins RP; Buschang PH; Martins LP; Gandini LG
    Am J Orthod Dentofacial Orthop; 2008 Jul; 134(1):161-6. PubMed ID: 18617117
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Holographic analysis of the initial canine displacement produced by four different retraction springs.
    Kumar YM; Ravindran NS; Balasubramaniam MR
    Angle Orthod; 2009 Mar; 79(2):368-72. PubMed ID: 19216610
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The drum spring (DS) retractor: constant and continuous force for canine retraction.
    Darendeliler MA; Darendeliler H; Uner O
    Eur J Orthod; 1997 Apr; 19(2):115-30. PubMed ID: 9183061
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The force requirements for tooth movement, Part I: Tipping and bodily movement.
    Lee BW
    Aust Orthod J; 1995 Mar; 13(4):238-48. PubMed ID: 8975662
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional modeling and finite element analysis in treatment planning for orthodontic tooth movement.
    Ammar HH; Ngan P; Crout RJ; Mucino VH; Mukdadi OM
    Am J Orthod Dentofacial Orthop; 2011 Jan; 139(1):e59-71. PubMed ID: 21195258
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-linear large deformation FE analysis of orthodontic springs.
    Chen J; Chen K; Katona TR; Baldwin JJ; Arbuckle GR
    Biomed Mater Eng; 1997; 7(2):99-110. PubMed ID: 9262823
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effective en-masse retraction design with orthodontic mini-implant anchorage: a finite element analysis.
    Sung SJ; Jang GW; Chun YS; Moon YS
    Am J Orthod Dentofacial Orthop; 2010 May; 137(5):648-57. PubMed ID: 20451784
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of movement rate with different initial moment-to-force ratios.
    Li S; Chen J; Kula KS
    Am J Orthod Dentofacial Orthop; 2019 Aug; 156(2):203-209. PubMed ID: 31375230
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Group A T-loop for differential moment mechanics: an implant study.
    Martins RP; Buschang PH; Gandini LG
    Am J Orthod Dentofacial Orthop; 2009 Feb; 135(2):182-9. PubMed ID: 19201324
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical properties of Opus closing loops, L-loops, and T-loops investigated with finite element analysis.
    Techalertpaisarn P; Versluis A
    Am J Orthod Dentofacial Orthop; 2013 May; 143(5):675-83. PubMed ID: 23631969
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.