BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

476 related articles for article (PubMed ID: 10660497)

  • 1. Accumulation of rifampicin by Mycobacterium aurum, Mycobacterium smegmatis and Mycobacterium tuberculosis.
    Piddock LJ; Williams KJ; Ricci V
    J Antimicrob Chemother; 2000 Feb; 45(2):159-65. PubMed ID: 10660497
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accumulation of KRM-1648 by Mycobacterium aurum and Mycobacterium tuberculosis.
    Piddock LJ; Ricci V
    J Antimicrob Chemother; 2000 May; 45(5):681-4. PubMed ID: 10797093
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accumulation of norfloxacin by Mycobacterium aurum and Mycobacterium smegmatis.
    Williams KJ; Chung GA; Piddock LJ
    Antimicrob Agents Chemother; 1998 Apr; 42(4):795-800. PubMed ID: 9559785
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Secondary metabolites from Tetracera potatoria stem bark with anti-mycobacterial activity.
    Fomogne-Fodjo MC; Ndinteh DT; Olivier DK; Kempgens P; van Vuuren S; Krause RW
    J Ethnopharmacol; 2017 Jan; 195():238-245. PubMed ID: 27864111
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro activity of C-8-methoxy fluoroquinolones against mycobacteria when combined with anti-tuberculosis agents.
    Lu T; Drlica K
    J Antimicrob Chemother; 2003 Dec; 52(6):1025-8. PubMed ID: 14613961
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of mycobacterial growth by plumbagin derivatives.
    Mathew R; Kruthiventi AK; Prasad JV; Kumar SP; Srinu G; Chatterji D
    Chem Biol Drug Des; 2010 Jul; 76(1):34-42. PubMed ID: 20456370
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of nitroxyl donors' effect on mycobacteria.
    Galizia J; Acosta MP; Urdániz E; Martí MA; Piuri M
    Tuberculosis (Edinb); 2018 Mar; 109():35-40. PubMed ID: 29559119
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of the Mycobacterium smegmatis and BCG models for the discovery of Mycobacterium tuberculosis inhibitors.
    Altaf M; Miller CH; Bellows DS; O'Toole R
    Tuberculosis (Edinb); 2010 Nov; 90(6):333-7. PubMed ID: 20933470
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonquaternary poly(diallylammonium) polymers with different amine structure and their biocidal effect on Mycobacterium tuberculosis and Mycobacterium smegmatis.
    Timofeeva LM; Kleshcheva NA; Shleeva MO; Filatova MP; Simonova YA; Ermakov YA; Kaprelyants AS
    Appl Microbiol Biotechnol; 2015 Mar; 99(6):2557-71. PubMed ID: 25557627
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potentiating the Anti-Tuberculosis Efficacy of Peptide Nucleic Acids through Combinations with Permeabilizing Drugs.
    Cotta KB; Ghosh S; Mehra S
    Microbiol Spectr; 2022 Feb; 10(1):e0126221. PubMed ID: 35171048
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Sensitivity of M. tuberculosis and atypical mycobacteria to ethambutol, capreomycin and rifampicin].
    Schröder KH; Hensel J; Scheuch V
    Prax Pneumol; 1969 Oct; 23(10):683-94. PubMed ID: 4984409
    [No Abstract]   [Full Text] [Related]  

  • 12. Accumulation of rifampicin by Escherichia coli and Staphylococcus aureus.
    Williams KJ; Piddock LJ
    J Antimicrob Chemother; 1998 Nov; 42(5):597-603. PubMed ID: 9848443
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Mycobacterial Efflux Pump EfpA Can Induce High Drug Tolerance to Many Antituberculosis Drugs, Including Moxifloxacin, in Mycobacterium smegmatis.
    Rai D; Mehra S
    Antimicrob Agents Chemother; 2021 Oct; 65(11):e0026221. PubMed ID: 34424047
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Farnesol, a potential efflux pump inhibitor in Mycobacterium smegmatis.
    Jin J; Zhang JY; Guo N; Sheng H; Li L; Liang JC; Wang XL; Li Y; Liu MY; Wu XP; Yu L
    Molecules; 2010 Oct; 15(11):7750-62. PubMed ID: 21042264
    [TBL] [Abstract][Full Text] [Related]  

  • 15.
    Swaminath S; Paul A; Pradhan A; Sebastian J; Nair RR; Ajitkumar P
    Microbiology (Reading); 2020 Feb; 166(2):180-198. PubMed ID: 31746727
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of Mycobacterium smegmatis deficient in ADP-ribosyltransferase as surrogate for Mycobacterium tuberculosis in drug testing and mutation analysis.
    Agrawal P; Miryala S; Varshney U
    PLoS One; 2015; 10(4):e0122076. PubMed ID: 25874691
    [TBL] [Abstract][Full Text] [Related]  

  • 17. mmpL7 gene of Mycobacterium tuberculosis is responsible for isoniazid efflux in Mycobacterium smegmatis.
    Pasca MR; Guglierame P; De Rossi E; Zara F; Riccardi G
    Antimicrob Agents Chemother; 2005 Nov; 49(11):4775-7. PubMed ID: 16251328
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flavonoids as Novel Efflux Pump Inhibitors and Antimicrobials Against Both Environmental and Pathogenic Intracellular Mycobacterial Species.
    Solnier J; Martin L; Bhakta S; Bucar F
    Molecules; 2020 Feb; 25(3):. PubMed ID: 32046221
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of Mycobacterium smegmatis as a possible surrogate screen for selecting molecules active against multi-drug resistant Mycobacterium tuberculosis.
    Chaturvedi V; Dwivedi N; Tripathi RP; Sinha S
    J Gen Appl Microbiol; 2007 Dec; 53(6):333-7. PubMed ID: 18187888
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ethidium bromide transport across Mycobacterium smegmatis cell-wall: correlation with antibiotic resistance.
    Rodrigues L; Ramos J; Couto I; Amaral L; Viveiros M
    BMC Microbiol; 2011 Feb; 11():35. PubMed ID: 21332993
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.