BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 10660530)

  • 1. Disruption of the 14-3-3 binding site within the B-Raf kinase domain uncouples catalytic activity from PC12 cell differentiation.
    MacNicol MC; Muslin AJ; MacNicol AM
    J Biol Chem; 2000 Feb; 275(6):3803-9. PubMed ID: 10660530
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activation of B-Raf kinase requires phosphorylation of the conserved residues Thr598 and Ser601.
    Zhang BH; Guan KL
    EMBO J; 2000 Oct; 19(20):5429-39. PubMed ID: 11032810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of the Raf-1 kinase domain by phosphorylation and 14-3-3 association.
    Yip-Schneider MT; Miao W; Lin A; Barnard DS; Tzivion G; Marshall MS
    Biochem J; 2000 Oct; 351(Pt 1):151-9. PubMed ID: 10998357
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic changes in C-Raf phosphorylation and 14-3-3 protein binding in response to growth factor stimulation: differential roles of 14-3-3 protein binding sites.
    Hekman M; Wiese S; Metz R; Albert S; Troppmair J; Nickel J; Sendtner M; Rapp UR
    J Biol Chem; 2004 Apr; 279(14):14074-86. PubMed ID: 14688280
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation and role of Raf-1/B-Raf heterodimerization.
    Rushworth LK; Hindley AD; O'Neill E; Kolch W
    Mol Cell Biol; 2006 Mar; 26(6):2262-72. PubMed ID: 16508002
    [TBL] [Abstract][Full Text] [Related]  

  • 6. R-Ras3/M-Ras induces neuronal differentiation of PC12 cells through cell-type-specific activation of the mitogen-activated protein kinase cascade.
    Kimmelman AC; Nuñez Rodriguez N; Chan AM
    Mol Cell Biol; 2002 Aug; 22(16):5946-61. PubMed ID: 12138204
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of the Raf kinase by phosphorylation.
    Zhang BH; Guan KL
    Exp Lung Res; 2001; 27(3):269-95. PubMed ID: 11293329
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Xp42(Mpk1) activation is not required for germinal vesicle breakdown but for Raf complete phosphorylation in insulin-stimulated Xenopus oocytes.
    Baert F; Bodart JF; Bocquet-Muchembled B; Lescuyer-Rousseau A; Vilain JP
    J Biol Chem; 2003 Dec; 278(50):49714-20. PubMed ID: 14507918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of residues in the cysteine-rich domain of Raf-1 that control Ras binding and Raf-1 activity.
    Winkler DG; Cutler RE; Drugan JK; Campbell S; Morrison DK; Cooper JA
    J Biol Chem; 1998 Aug; 273(34):21578-84. PubMed ID: 9705288
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cell type-specific regulation of B-Raf kinase by cAMP and 14-3-3 proteins.
    Qiu W; Zhuang S; von Lintig FC; Boss GR; Pilz RB
    J Biol Chem; 2000 Oct; 275(41):31921-9. PubMed ID: 10931830
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nerve growth factor-stimulated B-Raf catalytic activity is refractory to inhibition by cAMP-dependent protein kinase.
    MacNicol MC; MacNicol AM
    J Biol Chem; 1999 May; 274(19):13193-7. PubMed ID: 10224075
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The mitogen-activated protein (MAP) kinase cascade can either stimulate or inhibit DNA synthesis in primary cultures of rat hepatocytes depending upon whether its activation is acute/phasic or chronic.
    Tombes RM; Auer KL; Mikkelsen R; Valerie K; Wymann MP; Marshall CJ; McMahon M; Dent P
    Biochem J; 1998 Mar; 330 ( Pt 3)(Pt 3):1451-60. PubMed ID: 9494119
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF.
    Wan PT; Garnett MJ; Roe SM; Lee S; Niculescu-Duvaz D; Good VM; Jones CM; Marshall CJ; Springer CJ; Barford D; Marais R;
    Cell; 2004 Mar; 116(6):855-67. PubMed ID: 15035987
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphorylation of 338SSYY341 regulates specific interaction between Raf-1 and MEK1.
    Xiang X; Zang M; Waelde CA; Wen R; Luo Z
    J Biol Chem; 2002 Nov; 277(47):44996-5003. PubMed ID: 12244094
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of Raf-1 S471 as a novel phosphorylation site critical for Raf-1 and B-Raf kinase activities and for MEK binding.
    Zhu J; Balan V; Bronisz A; Balan K; Sun H; Leicht DT; Luo Z; Qin J; Avruch J; Tzivion G
    Mol Biol Cell; 2005 Oct; 16(10):4733-44. PubMed ID: 16093354
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Apigenin and LY294002 prolong EGF-stimulated ERK1/2 activation in PC12 cells but are unable to induce full differentiation.
    Llorens F; Garcia L; Itarte E; Gómez N
    FEBS Lett; 2002 Jan; 510(3):149-53. PubMed ID: 11801244
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oncogenic Met receptor induces cell-cycle progression in Xenopus oocytes independent of direct Grb2 and Shc binding or Mos synthesis, but requires phosphatidylinositol 3-kinase and Raf signaling.
    Mood K; Saucier C; Ishimura A; Bong YS; Lee HS; Park M; Daar IO
    J Cell Physiol; 2006 Apr; 207(1):271-85. PubMed ID: 16331688
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of the MAP kinase cascade in PC12 cells: B-Raf activates MEK-1 (MAP kinase or ERK kinase) and is inhibited by cAMP.
    Peraldi P; Frödin M; Barnier JV; Calleja V; Scimeca JC; Filloux C; Calothy G; Van Obberghen E
    FEBS Lett; 1995 Jan; 357(3):290-6. PubMed ID: 7835430
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phospholipase activity of phospholipase C-gamma1 is required for nerve growth factor-regulated MAP kinase signaling cascade in PC12 cells.
    Rong R; Ahn JY; Chen P; Suh PG; Ye K
    J Biol Chem; 2003 Dec; 278(52):52497-503. PubMed ID: 14570902
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphorylation of Raf-1 by p21-activated kinase 1 and Src regulates Raf-1 autoinhibition.
    Tran NH; Frost JA
    J Biol Chem; 2003 Mar; 278(13):11221-6. PubMed ID: 12551923
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.