BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 10660996)

  • 1. Mapping the air in real-time to visualize the flow of gases and vapors: occupational and environmental applications.
    Todd LA
    Appl Occup Environ Hyg; 2000 Jan; 15(1):106-13. PubMed ID: 10660996
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental evaluation of an environmental CAT scanning system for mapping chemicals in air in real-time.
    Todd LA; Farhat SK; Mottus KM; Mihlan GJ
    Appl Occup Environ Hyg; 2001 Jan; 16(1):45-55. PubMed ID: 11202028
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatial and temporal visualization of gases and vapours in air using computed tomography. Numerical studies.
    Bhattacharyya R; Todd LA
    Ann Occup Hyg; 1997 Jan; 41(1):105-22. PubMed ID: 9072946
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluating heterogeneity in indoor and outdoor air pollution using land-use regression and constrained factor analysis.
    Levy JI; Clougherty JE; Baxter LK; Houseman EA; Paciorek CJ;
    Res Rep Health Eff Inst; 2010 Dec; (152):5-80; discussion 81-91. PubMed ID: 21409949
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Imaging indoor tracer-gas concentrations with computed tomography: experimental results with a remote sensing FTIR system.
    Yost MG; Gadgil AJ; Drescher AC; Zhou Y; Simonds MA; Levine SP; Nazaroff WW; Saisan PA
    Am Ind Hyg Assoc J; 1994 May; 55(5):395-402. PubMed ID: 8209844
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Field evaluation of nanofilm detectors for measuring acidic particles in indoor and outdoor air.
    Cohen BS; Heikkinen MS; Hazi Y; Gao H; Peters P; Lippmann M
    Res Rep Health Eff Inst; 2004 Sep; (121):1-35; discussion 37-46. PubMed ID: 15553489
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of an infrared open-path spectrometer using an exposure chamber and a calibration cell.
    Todd L; Ramachandran G
    Am Ind Hyg Assoc J; 1995 Feb; 56(2):151-7. PubMed ID: 7856516
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mapping air contaminants indoors using a prototype computed tomography system.
    Samanta A; Todd LA
    Ann Occup Hyg; 1996 Dec; 40(6):675-91. PubMed ID: 8958773
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relationships of Indoor, Outdoor, and Personal Air (RIOPA). Part I. Collection methods and descriptive analyses.
    Weisel CP; Zhang J; Turpin BJ; Morandi MT; Colome S; Stock TH; Spektor DM; Korn L; Winer AM; Kwon J; Meng QY; Zhang L; Harrington R; Liu W; Reff A; Lee JH; Alimokhtari S; Mohan K; Shendell D; Jones J; Farrar L; Maberti S; Fan T
    Res Rep Health Eff Inst; 2005 Nov; (130 Pt 1):1-107; discussion 109-27. PubMed ID: 16454009
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Field evaluation of a transportable open-path FTIR spectrometer for real-time air monitoring.
    Ross KR; Todd LA
    Appl Occup Environ Hyg; 2002 Feb; 17(2):131-43. PubMed ID: 11843199
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fourier transform infrared (FTIR) spectroscopy for monitoring airborne gases and vapors of industrial hygiene concern.
    Ying LS; Levine SP; Strang CR; Herget WF
    Am Ind Hyg Assoc J; 1989 Jul; 50(7):354-9. PubMed ID: 2756866
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Brooklyn traffic real-time ambient pollutant penetration and environmental dispersion (B-TRAPPED) field study methodology.
    Richmond-Bryant J; Hahn I; Fortune CR; Rodes CE; Portzer JW; Lee S; Wiener RW; Smith LA; Wheeler M; Seagraves J; Stein M; Eisner AD; Brixey LA; Drake-Richman ZE; Brouwer LH; Ellenson WD; Baldauf R
    J Environ Monit; 2009 Dec; 11(12):2122-35. PubMed ID: 20024009
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling population exposures to outdoor sources of hazardous air pollutants.
    Ozkaynak H; Palma T; Touma JS; Thurman J
    J Expo Sci Environ Epidemiol; 2008 Jan; 18(1):45-58. PubMed ID: 17878926
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Passive remote sensing of VOC in atmosphere by FTIR spectrometry].
    Gao MG; Liu WQ; Zhang TS; Liu JG; Lu YH; Zhu J; Lian Y; Lu F
    Guang Pu Xue Yu Guang Pu Fen Xi; 2005 Jul; 25(7):1042-4. PubMed ID: 16241050
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of open-path FTIR spectrometers for monitoring multiple chemicals in air.
    Farhat SK; Todd LA
    Appl Occup Environ Hyg; 2000 Dec; 15(12):911-23. PubMed ID: 11141603
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monitoring of 1-min personal particulate matter exposures in relation to voice-recorded time-activity data.
    Quintana PJ; Valenzia JR; Delfino RJ; Liu LJ
    Environ Res; 2001 Dec; 87(3):199-213. PubMed ID: 11771933
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development and application of a sensitive method to determine concentrations of acrolein and other carbonyls in ambient air.
    Cahill TM; Charles MJ; Seaman VY;
    Res Rep Health Eff Inst; 2010 May; (149):3-46. PubMed ID: 20608023
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toxic volatile organic compounds in simulated environmental tobacco smoke: emission factors for exposure assessment.
    Daisey JM; Mahanama KR; Hodgson AT
    J Expo Anal Environ Epidemiol; 1998; 8(3):313-34. PubMed ID: 9679214
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prototype sampling system for measuring workplace protection factors for gases and vapors.
    Groves WA; Reynolds SJ
    Appl Occup Environ Hyg; 2003 May; 18(5):394-402. PubMed ID: 12746083
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of optical source-detector configurations for tomographic reconstruction of chemical concentrations in indoor air.
    Todd L; Ramachandran G
    Am Ind Hyg Assoc J; 1994 Dec; 55(12):1133-43. PubMed ID: 7825513
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.