These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 10661328)

  • 41. On a construction of a hierarchy of best linear spline approximations using a finite element approach.
    Wiley DF; Bertram M; Hamann B
    IEEE Trans Vis Comput Graph; 2004; 10(5):548-63. PubMed ID: 15794137
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A finite-element model for the mechanical analysis of skeletal muscles.
    Johansson T; Meier P; Blickhan R
    J Theor Biol; 2000 Sep; 206(1):131-49. PubMed ID: 10968943
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [EM algorithm for the inverse problem of electrocardiography].
    Gao F; Liu H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Aug; 25(4):795-800. PubMed ID: 18788282
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Microwave early detection of breast cancers using a virtual-focus scanning method.
    Yang P; Chen Y; Chen J; Bulter W; Wu X
    Electromagn Biol Med; 2008; 27(3):312-22. PubMed ID: 18821206
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Solving the ECG forward problem by means of a meshless finite element method.
    Li ZS; Zhu SA; He B
    Phys Med Biol; 2007 Jul; 52(13):N287-96. PubMed ID: 17664567
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A three-dimensional elastic plastic damage constitutive law for bone tissue.
    Garcia D; Zysset PK; Charlebois M; Curnier A
    Biomech Model Mechanobiol; 2009 Apr; 8(2):149-65. PubMed ID: 18398628
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Efficient frequency-domain finite element modeling of two-dimensional elastodynamic scattering.
    Wilcox PD; Velichko A
    J Acoust Soc Am; 2010 Jan; 127(1):155-65. PubMed ID: 20058959
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Superficial microwaves hyperthermia tumoral temperature distribution by using finite element analysis].
    Munteanu F; Munteanu A; Bild E
    Rev Med Chir Soc Med Nat Iasi; 2008; 112(1):266-71. PubMed ID: 18677940
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Quantitative microwave imaging with a 2.45-GHz planar microwave camera.
    Franchois A; Joisel A; Pichot C; Bolomey JC
    IEEE Trans Med Imaging; 1998 Aug; 17(4):550-61. PubMed ID: 9845311
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Ultrasonic inverse scattering of multidimensional objects buried in multilayered elastic background structures.
    Ayme-Bellegarda E; Habashy TM
    IEEE Trans Ultrason Ferroelectr Freq Control; 1992; 39(1):11-8. PubMed ID: 18263113
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Bayesian approach with the maximum entropy principle in image reconstruction from microwave scattered field data.
    Nguyen MK; Mohammad-Djafari A
    IEEE Trans Med Imaging; 1994; 13(2):254-62. PubMed ID: 18218502
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Coordinate transformation aided finite element method for contour detection of breast tumors in microwave imaging.
    Ozgun O; Kuzuoglu M
    Int J Numer Method Biomed Eng; 2018 Oct; 34(10):e3124. PubMed ID: 29959827
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Hybrid finite element-boundary integral algorithm to solve the problem of scattering from a finite array of cavities with multilayer stratified dielectric coating.
    Alavikia B; Ramahi OM
    J Opt Soc Am A Opt Image Sci Vis; 2011 Oct; 28(10):2192-9. PubMed ID: 21979527
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Graph- and finite element-based total variation models for the inverse problem in diffuse optical tomography.
    Lu W; Duan J; Orive-Miguel D; Herve L; Styles IB
    Biomed Opt Express; 2019 Jun; 10(6):2684-2707. PubMed ID: 31259044
    [TBL] [Abstract][Full Text] [Related]  

  • 55. An iterative finite element-based method for solving inverse problems in traction force microscopy.
    Cóndor M; García-Aznar JM
    Comput Methods Programs Biomed; 2019 Dec; 182():105056. PubMed ID: 31542705
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Multiresolution subspace-based optimization method for inverse scattering problems.
    Oliveri G; Zhong Y; Chen X; Massa A
    J Opt Soc Am A Opt Image Sci Vis; 2011 Oct; 28(10):2057-69. PubMed ID: 21979510
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Ocean acoustic tomography from different receiver geometries using the adjoint method.
    Zhao X; Wang D
    J Acoust Soc Am; 2015 Dec; 138(6):3733-41. PubMed ID: 26723329
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A Finite Element Approach for Skeletal Muscle using a Distributed Moment Model of Contraction.
    Gielen AW; Oomens CW; Bovendeerd PH; Arts T; Janssen JD
    Comput Methods Biomech Biomed Engin; 2000; 3(3):231-244. PubMed ID: 11264850
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Finite Element Modeling of scattered electromagnetic waves for stroke analysis.
    Priyadarshini N; Rajkumar ER
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():2404-7. PubMed ID: 24110210
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Microwave Bone Imaging: A Preliminary Investigation on Numerical Bone Phantoms for Bone Health Monitoring.
    Amin B; Shahzad A; O'Halloran M; Elahi MA
    Sensors (Basel); 2020 Nov; 20(21):. PubMed ID: 33167562
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.