These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
44 related articles for article (PubMed ID: 10662893)
1. Forskolin has a bimodal cAMP-independent effect on superoxide anion generation in isolated osteoclasts. Berger CE; Datta HK Exp Physiol; 2000 Jan; 85(1):57-60. PubMed ID: 10662893 [TBL] [Abstract][Full Text] [Related]
2. Scanning electrochemical microscopy at the surface of bone-resorbing osteoclasts: evidence for steady-state disposal and intracellular functional compartmentalization of calcium. Berger CE; Rathod H; Gillespie JI; Horrocks BR; Datta HK J Bone Miner Res; 2001 Nov; 16(11):2092-102. PubMed ID: 11697806 [TBL] [Abstract][Full Text] [Related]
3. Calcitonin-like effects of forskolin and choleratoxin on surface area and motility of isolated rabbit osteoclasts. Ransjö M; Lerner UH; Heersche JN J Bone Miner Res; 1988 Dec; 3(6):611-9. PubMed ID: 3251398 [TBL] [Abstract][Full Text] [Related]
4. Forskolin augments the effects of calcitonin on cytoplasmic spreading of isolated rat osteoclasts and plasma calcium levels in the rat. Nicholson GC; Yumita S; Moseley JM; Yates AJ; Martin TJ J Bone Miner Res; 1988 Apr; 3(2):181-4. PubMed ID: 3213613 [TBL] [Abstract][Full Text] [Related]
5. cAMP-dependent inhibition is dominant in regulating superoxide production in the bone-resorbing osteoclasts. Berger CE; Horrocks BR; Datta HK J Endocrinol; 1998 Sep; 158(3):311-8. PubMed ID: 9846160 [TBL] [Abstract][Full Text] [Related]
6. Icaritin and its glycosides enhance osteoblastic, but suppress osteoclastic, differentiation and activity in vitro. Huang J; Yuan L; Wang X; Zhang TL; Wang K Life Sci; 2007 Aug; 81(10):832-40. PubMed ID: 17764702 [TBL] [Abstract][Full Text] [Related]
7. Forskolin and 8-cyclopentyltheophylline synergistically facilitate the neuronal activity in the CA2 area of rat hippocampus via cAMP and non-cAMP cascades. Zhang J; Sekino Y; Yuan XH Sheng Li Xue Bao; 2006 Oct; 58(5):435-41. PubMed ID: 17041727 [TBL] [Abstract][Full Text] [Related]
8. Effect of high phosphate concentration on osteoclast differentiation as well as bone-resorbing activity. Kanatani M; Sugimoto T; Kano J; Kanzawa M; Chihara K J Cell Physiol; 2003 Jul; 196(1):180-9. PubMed ID: 12767054 [TBL] [Abstract][Full Text] [Related]
9. Imatinib mesylate (Gleevec) enhances mature osteoclast apoptosis and suppresses osteoclast bone resorbing activity. El Hajj Dib I; Gallet M; Mentaverri R; Sévenet N; Brazier M; Kamel S Eur J Pharmacol; 2006 Dec; 551(1-3):27-33. PubMed ID: 17049513 [TBL] [Abstract][Full Text] [Related]
10. Everolimus suppresses cancellous bone loss, bone resorption, and cathepsin K expression by osteoclasts. Kneissel M; Luong-Nguyen NH; Baptist M; Cortesi R; Zumstein-Mecker S; Kossida S; O'Reilly T; Lane H; Susa M Bone; 2004 Nov; 35(5):1144-56. PubMed ID: 15542040 [TBL] [Abstract][Full Text] [Related]
11. Biological activity of chicken calcitonin: effects on neonatal rat and embryonic chick osteoclasts. Dempster DW; Murrills RJ; Horbert WR; Arnett TR J Bone Miner Res; 1987 Oct; 2(5):443-8. PubMed ID: 3455627 [TBL] [Abstract][Full Text] [Related]
12. Direct non-genomic effect of steroid hormones on superoxide anion generation in the bone resorbing osteoclasts. Berger CE; Horrocks BR; Datta HK Mol Cell Endocrinol; 1999 Mar; 149(1-2):53-9. PubMed ID: 10375017 [TBL] [Abstract][Full Text] [Related]
13. Ca2+-independent, inhibitory effects of cyclic adenosine 5'-monophosphate on Ca2+ regulation of phosphoinositide 3-kinase C2alpha, Rho, and myosin phosphatase in vascular smooth muscle. Azam MA; Yoshioka K; Ohkura S; Takuwa N; Sugimoto N; Sato K; Takuwa Y J Pharmacol Exp Ther; 2007 Feb; 320(2):907-16. PubMed ID: 17110524 [TBL] [Abstract][Full Text] [Related]
14. Thymulin and zinc (Zn2+)-mediated inhibition of endotoxin-induced production of proinflammatory cytokines and NF-kappaB nuclear translocation and activation in the alveolar epithelium: unraveling the molecular immunomodulatory, anti-inflammatory effect of thymulin/Zn2+ in vitro. Haddad JJ Mol Immunol; 2009 Dec; 47(2-3):205-14. PubMed ID: 19850345 [TBL] [Abstract][Full Text] [Related]
15. Osteoclastic superoxide generation: taking control of bone resorption using modulators of superoxide concentrations. Key LL; Ries WL; Glasscock H; Rodriguiz R; Jaffe H Int J Tissue React; 1992; 14(6):295-8. PubMed ID: 1339119 [TBL] [Abstract][Full Text] [Related]
16. Characterization of interferon gamma receptors on osteoclasts: effect of interferon gamma on osteoclastic superoxide generation. Yang S; Madyastha P; Ries W; Key LL J Cell Biochem; 2002; 84(3):645-54. PubMed ID: 11813269 [TBL] [Abstract][Full Text] [Related]
17. Cyclic AMP-mediated regulation of the resting membrane potential in myelin-forming oligodendrocytes in the isolated intact rat optic nerve. Bolton S; Butt AM Exp Neurol; 2006 Nov; 202(1):36-43. PubMed ID: 16797534 [TBL] [Abstract][Full Text] [Related]
18. Mechanisms involved in prostaglandin-induced increase in bone resorption in neonatal mouse calvaria. Gardner CR; Blanqué R; Cottereaux C Prostaglandins Leukot Essent Fatty Acids; 2001 Feb; 64(2):117-25. PubMed ID: 11237479 [TBL] [Abstract][Full Text] [Related]
19. Pamidronate prevents bone loss associated with carrageenan arthritis by reducing resorptive activity but not recruitment of osteoclasts. Moran EL; Fornasier TL; Bogoch TR J Orthop Res; 2000 Nov; 18(6):873-81. PubMed ID: 11192246 [TBL] [Abstract][Full Text] [Related]
20. [Effects of calcitonin on osteoclast]. Yamamoto Y; Noguchi T; Takahashi N Clin Calcium; 2005 Mar; 15(3):147-51. PubMed ID: 15741694 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]