BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 10663532)

  • 1. Structure prediction of the dimeric neu/ErbB-2 transmembrane domain from multi-nanosecond molecular dynamics simulations.
    Sajot N; Genest M
    Eur Biophys J; 2000; 28(8):648-62. PubMed ID: 10663532
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dimer interface of transmembrane domains for neu/erbB-2 receptor dimerization and transforming activation: a model revealed by molecular dynamics simulations.
    Sajot N; Genest M
    J Biomol Struct Dyn; 2001 Aug; 19(1):15-31. PubMed ID: 11565846
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular modeling of c-erbB2 receptor dimerization: coiled-coil structure of wild and oncogenic transmembrane domains--stabilization by interhelical hydrogen bonds in the oncogenic form.
    Garnier N; Genest D; Duneau JP; Genest M
    Biopolymers; 1997 Aug; 42(2):157-68. PubMed ID: 9234995
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transmembrane helix packing of ErbB/Neu receptor in membrane environment: a molecular dynamics study.
    Aller P; Garnier N; Genest M
    J Biomol Struct Dyn; 2006 Dec; 24(3):209-28. PubMed ID: 17054379
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular dynamics (MD) investigations of preformed structures of the transmembrane domain of the oncogenic Neu receptor dimer in a DMPC bilayer.
    Aller P; Voiry L; Garnier N; Genest M
    Biopolymers; 2005 Mar; 77(4):184-97. PubMed ID: 15660449
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular dynamics simulations of the transmembrane domain of the oncogenic ErbB2 receptor dimer in a DMPC bilayer.
    Garnier N; Crouzy S; Genest M
    J Biomol Struct Dyn; 2003 Oct; 21(2):179-200. PubMed ID: 12956604
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transmembrane peptides from tyrosine kinase receptor. Mutation-related behavior in a lipid bilayer investigated by molecular dynamics simulations.
    Samna Soumana O; Aller P; Garnier N; Genest M
    J Biomol Struct Dyn; 2005 Aug; 23(1):91-100. PubMed ID: 15918680
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transmembrane interactions in the activation of the Neu receptor tyrosine kinase.
    Smith SO; Smith C; Shekar S; Peersen O; Ziliox M; Aimoto S
    Biochemistry; 2002 Jul; 41(30):9321-32. PubMed ID: 12135353
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Val(659)-->Glu mutation within the transmembrane domain of ErbB-2: effects measured by (2)H NMR in fluid phospholipid bilayers.
    Sharpe S; Barber KR; Grant CW
    Biochemistry; 2000 May; 39(21):6572-80. PubMed ID: 10828974
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conformation of the transmembrane domain of the c-erbB-2 oncogene-encoded protein in its monomeric and dimeric states.
    Brandt-Rauf PW; Pincus MR; Monaco R
    J Protein Chem; 1995 Jan; 14(1):33-40. PubMed ID: 7779261
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activation of Neu (ErbB-2) mediated by disulfide bond-induced dimerization reveals a receptor tyrosine kinase dimer interface.
    Burke CL; Stern DF
    Mol Cell Biol; 1998 Sep; 18(9):5371-9. PubMed ID: 9710621
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sequence dependence of BNIP3 transmembrane domain dimerization implicates side-chain hydrogen bonding and a tandem GxxxG motif in specific helix-helix interactions.
    Sulistijo ES; MacKenzie KR
    J Mol Biol; 2006 Dec; 364(5):974-90. PubMed ID: 17049556
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insight into signal transduction: structural alterations in transmembrane helices probed by multi-1 ns molecular dynamics simulations.
    Duneau JP; Garnier N; Genest M
    J Biomol Struct Dyn; 1997 Dec; 15(3):555-72. PubMed ID: 9440002
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transmembrane domain sequence requirements for activation of the p185c-neu receptor tyrosine kinase.
    Chen LI; Webster MK; Meyer AN; Donoghue DJ
    J Cell Biol; 1997 May; 137(3):619-31. PubMed ID: 9151669
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of proto-oncogenic and mutant forms of the transmembrane region of the Neu receptor in TFE.
    Houliston RS; Hodges RS; Sharom FJ; Davis JH
    FEBS Lett; 2003 Jan; 535(1-3):39-43. PubMed ID: 12560075
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strong hydrogen bonding interactions involving a buried glutamic acid in the transmembrane sequence of the neu/erbB-2 receptor.
    Smith SO; Smith CS; Bormann BJ
    Nat Struct Biol; 1996 Mar; 3(3):252-8. PubMed ID: 8605627
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Systematic molecular dynamics searching in a lipid bilayer: application to the glycophorin A and oncogenic ErbB-2 transmembrane domains.
    Beevers AJ; Kukol A
    J Mol Graph Model; 2006 Oct; 25(2):226-33. PubMed ID: 16434222
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The transmembrane domain of the oncogenic mutant ErbB-2 receptor: a structure obtained from site-specific infrared dichroism and molecular dynamics.
    Beevers AJ; Kukol A
    J Mol Biol; 2006 Sep; 361(5):945-53. PubMed ID: 16889796
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sequence-dependent oligomerization of the Neu transmembrane domain suggests inhibition of "conformational switching" by an oncogenic mutant.
    Beevers AJ; Damianoglou A; Oates J; Rodger A; Dixon AM
    Biochemistry; 2010 Apr; 49(13):2811-20. PubMed ID: 20180588
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The single transmembrane domains of ErbB receptors self-associate in cell membranes.
    Mendrola JM; Berger MB; King MC; Lemmon MA
    J Biol Chem; 2002 Feb; 277(7):4704-12. PubMed ID: 11741943
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.