BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 10663534)

  • 1. Simulation studies on bacteriorhodopsin alpha-helices.
    Son HS; Sansom MS
    Eur Biophys J; 2000; 28(8):674-82. PubMed ID: 10663534
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulation studies on bacteriorhodopsin bundle of transmembrane alpha segments.
    Son HS; Kerr ID; Sansom MS
    Eur Biophys J; 2000; 28(8):663-73. PubMed ID: 10663533
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulation of the packing of idealized transmembrane alpha-helix bundles.
    Son HS; Sansom MS
    Eur Biophys J; 1999; 28(6):489-98. PubMed ID: 10460342
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A (13)C NMR study on [3-(13)C]-, [1-(13)C]Ala-, or [1-(13)C]Val-labeled transmembrane peptides of bacteriorhodopsin in lipid bilayers: insertion, rigid-body motions, and local conformational fluctuations at ambient temperature.
    Kimura S; Naito A; Tuzi S; Saitô H
    Biopolymers; 2001 Jan; 58(1):78-88. PubMed ID: 11072231
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular dynamics of individual alpha-helices of bacteriorhodopsin in dimyristol phosphatidylocholine. I. Structure and dynamics.
    Woolf TB
    Biophys J; 1997 Nov; 73(5):2376-92. PubMed ID: 9370432
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Packing of transmembrane helices in bacteriorhodopsin folding: structure and thermodynamics.
    Chen CC; Wei CC; Sun YC; Chen CM
    J Struct Biol; 2008 May; 162(2):237-47. PubMed ID: 18262435
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of extra-membranous inter-helical loops in helix-helix interactions.
    Ulmschneider MB; Tieleman DP; Sansom MS
    Protein Eng Des Sel; 2005 Dec; 18(12):563-70. PubMed ID: 16251222
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of proline-containing alpha-helix (helix F model of bacteriorhodopsin) by molecular dynamics studies.
    Sankararamakrishnan R; Vishveshwara S
    Proteins; 1993 Jan; 15(1):26-41. PubMed ID: 8451238
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sequence divergence analysis for the prediction of seven-helix membrane protein structures: I. Comparison with bacteriorhodopsin.
    Du P; Alkorta I
    Protein Eng; 1994 Oct; 7(10):1221-9. PubMed ID: 7855137
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulation of glycophorin A transmembrane helix interactions by lipid bilayers: molecular dynamics calculations.
    Petrache HI; Grossfield A; MacKenzie KR; Engelman DM; Woolf TB
    J Mol Biol; 2000 Sep; 302(3):727-46. PubMed ID: 10986130
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamics and orientation of transmembrane peptide from bacteriorhodopsin incorporated into lipid bilayer as revealed by solid state (31)P and (13)C NMR spectroscopy.
    Kimura S; Naito A; Tuzi S; Saitô H
    Biopolymers; 2002 Feb; 63(2):122-31. PubMed ID: 11787000
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of the positioning of the seven transmembrane alpha-helices of bacteriorhodopsin. A molecular simulation study.
    Tuffery P; Etchebest C; Popot JL; Lavery R
    J Mol Biol; 1994 Mar; 236(4):1105-22. PubMed ID: 8120890
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How environment supports a state: molecular dynamics simulations of two states in bacteriorhodopsin suggest lipid and water compensation.
    Jang H; Crozier PS; Stevens MJ; Woolf TB
    Biophys J; 2004 Jul; 87(1):129-45. PubMed ID: 15240452
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A solvent model for simulations of peptides in bilayers. II. Membrane-spanning alpha-helices.
    Efremov RG; Nolde DE; Vergoten G; Arseniev AS
    Biophys J; 1999 May; 76(5):2460-71. PubMed ID: 10233063
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bacteriorhodopsin can be refolded from two independently stable transmembrane helices and the complementary five-helix fragment.
    Kahn TW; Engelman DM
    Biochemistry; 1992 Jul; 31(26):6144-51. PubMed ID: 1627558
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interactions of alpha-helices with lipid bilayers: a review of simulation studies.
    Biggin PC; Sansom MS
    Biophys Chem; 1999 Feb; 76(3):161-83. PubMed ID: 10074693
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pulling single bacteriorhodopsin out of a membrane: Comparison of simulation and experiment.
    Cieplak M; Filipek S; Janovjak H; Krzyśko KA
    Biochim Biophys Acta; 2006 Apr; 1758(4):537-44. PubMed ID: 16678120
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deciphering the folding kinetics of transmembrane helical proteins.
    Orlandini E; Seno F; Banavar JR; Laio A; Maritan A
    Proc Natl Acad Sci U S A; 2000 Dec; 97(26):14229-34. PubMed ID: 11121029
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The stability of transmembrane helices: a molecular dynamics study on the isolated helices of bacteriorhodopsin.
    Iyer LK; Vishveshwara S
    Biopolymers; 1996 Mar; 38(3):401-21. PubMed ID: 8906975
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potential of mean force analysis of the self-association of leucine-rich transmembrane α-helices: difference between atomistic and coarse-grained simulations.
    Nishizawa M; Nishizawa K
    J Chem Phys; 2014 Aug; 141(7):075101. PubMed ID: 25149815
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.