These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
625 related articles for article (PubMed ID: 10664134)
1. Control of seed dormancy in Nicotiana plumbaginifolia: post-imbibition abscisic acid synthesis imposes dormancy maintenance. Grappin P; Bouinot D; Sotta B; Miginiac E; Jullien M Planta; 2000 Jan; 210(2):279-85. PubMed ID: 10664134 [TBL] [Abstract][Full Text] [Related]
2. Changes in endogenous abscisic acid levels during dormancy release and maintenance of mature seeds: studies with the Cape Verde Islands ecotype, the dormant model of Arabidopsis thaliana. Ali-Rachedi S; Bouinot D; Wagner MH; Bonnet M; Sotta B; Grappin P; Jullien M Planta; 2004 Jul; 219(3):479-88. PubMed ID: 15060827 [TBL] [Abstract][Full Text] [Related]
3. Engineering seed dormancy by the modification of zeaxanthin epoxidase gene expression. Frey A; Audran C; Marin E; Sotta B; Marion-Poll A Plant Mol Biol; 1999 Apr; 39(6):1267-74. PubMed ID: 10380812 [TBL] [Abstract][Full Text] [Related]
4. Proteome analysis of Norway maple (Acer platanoides L.) seeds dormancy breaking and germination: influence of abscisic and gibberellic acids. Pawłowski TA BMC Plant Biol; 2009 May; 9():48. PubMed ID: 19413897 [TBL] [Abstract][Full Text] [Related]
5. On the role of abscisic acid in seed dormancy of red rice. Gianinetti A; Vernieri P J Exp Bot; 2007; 58(12):3449-62. PubMed ID: 17898421 [TBL] [Abstract][Full Text] [Related]
6. Abscisic acid regulates seed germination of Vellozia species in response to temperature. Vieira BC; Bicalho EM; Munné-Bosch S; Garcia QS Plant Biol (Stuttg); 2017 Mar; 19(2):211-216. PubMed ID: 27718313 [TBL] [Abstract][Full Text] [Related]
7. Exogenous auxin regulates multi-metabolic network and embryo development, controlling seed secondary dormancy and germination in Nicotiana tabacum L. Li Z; Zhang J; Liu Y; Zhao J; Fu J; Ren X; Wang G; Wang J BMC Plant Biol; 2016 Feb; 16():41. PubMed ID: 26860357 [TBL] [Abstract][Full Text] [Related]
8. Storage behavior and changes in concentrations of abscisic acid and gibberellins during dormancy break and germination in seeds of Phellodendron amurense var. wilsonii (Rutaceae). Chen SY; Chien CT; Baskin JM; Baskin CC Tree Physiol; 2010 Feb; 30(2):275-84. PubMed ID: 20008838 [TBL] [Abstract][Full Text] [Related]
9. Abscisic acid in the thermoinhibition of lettuce seed germination and enhancement of its catabolism by gibberellin. Gonai T; Kawahara S; Tougou M; Satoh S; Hashiba T; Hirai N; Kawaide H; Kamiya Y; Yoshioka T J Exp Bot; 2004 Jan; 55(394):111-8. PubMed ID: 14676289 [TBL] [Abstract][Full Text] [Related]
10. Proteomics of European beech (Fagus sylvatica L.) seed dormancy breaking: influence of abscisic and gibberellic acids. Pawłowski TA Proteomics; 2007 Jun; 7(13):2246-57. PubMed ID: 17533642 [TBL] [Abstract][Full Text] [Related]
11. Roles of gibberellins and abscisic acid in dormancy and germination of red bayberry (Myrica rubra) seeds. Chen SY; Kuo SR; Chien CT Tree Physiol; 2008 Sep; 28(9):1431-9. PubMed ID: 18595855 [TBL] [Abstract][Full Text] [Related]
12. The etr1-2 mutation in Arabidopsis thaliana affects the abscisic acid, auxin, cytokinin and gibberellin metabolic pathways during maintenance of seed dormancy, moist-chilling and germination. Chiwocha SD; Cutler AJ; Abrams SR; Ambrose SJ; Yang J; Ross AR; Kermode AR Plant J; 2005 Apr; 42(1):35-48. PubMed ID: 15773852 [TBL] [Abstract][Full Text] [Related]
13. The Arabidopsis MYB96 transcription factor plays a role in seed dormancy. Lee HG; Lee K; Seo PJ Plant Mol Biol; 2015 Mar; 87(4-5):371-81. PubMed ID: 25616734 [TBL] [Abstract][Full Text] [Related]
14. Proteomic analysis of seed dormancy in Arabidopsis. Chibani K; Ali-Rachedi S; Job C; Job D; Jullien M; Grappin P Plant Physiol; 2006 Dec; 142(4):1493-510. PubMed ID: 17028149 [TBL] [Abstract][Full Text] [Related]
15. ABA and GA Barreto LC; Herken DMD; Silva BMR; Munné-Bosch S; Garcia QS Planta; 2020 Mar; 251(4):86. PubMed ID: 32221719 [TBL] [Abstract][Full Text] [Related]
16. Seed after-ripening and over-expression of class I beta-1,3-glucanase confer maternal effects on tobacco testa rupture and dormancy release. Leubner-Metzger G Planta; 2002 Oct; 215(6):959-68. PubMed ID: 12355156 [TBL] [Abstract][Full Text] [Related]
17. Expression patterns of ABA and GA metabolism genes and hormone levels during rice seed development and imbibition: a comparison of dormant and non-dormant rice cultivars. Liu Y; Fang J; Xu F; Chu J; Yan C; Schläppi MR; Wang Y; Chu C J Genet Genomics; 2014 Jun; 41(6):327-38. PubMed ID: 24976122 [TBL] [Abstract][Full Text] [Related]
18. Molecular mechanism of seed dormancy release induced by fluridone compared with cod stratification in Notopterygium incisum. Aihua L; Shunyuan J; Guang Y; Ying L; Na G; Tong C; Liping K; Luqi H BMC Plant Biol; 2018 Jun; 18(1):116. PubMed ID: 29890940 [TBL] [Abstract][Full Text] [Related]
19. Regulation of carotenoid and ABA accumulation during the development and germination of Nicotiana plumbaginifolia seeds. Frey A; Boutin JP; Sotta B; Mercier R; Marion-Poll A Planta; 2006 Aug; 224(3):622-32. PubMed ID: 16482436 [TBL] [Abstract][Full Text] [Related]
20. Physiological characteristics and related gene expression of after-ripening on seed dormancy release in rice. Du W; Cheng J; Cheng Y; Wang L; He Y; Wang Z; Zhang H Plant Biol (Stuttg); 2015 Nov; 17(6):1156-64. PubMed ID: 26205956 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]