These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 10665671)

  • 1. Sensory feedback in artificial control of human mobility.
    Veltink PH
    Technol Health Care; 1999; 7(6):383-91. PubMed ID: 10665671
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interfacing the body's own sensing receptors into neural prosthesis devices.
    Haugland M; Sinkjaer T
    Technol Health Care; 1999; 7(6):393-9. PubMed ID: 10665672
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Machine learning in control of functional electrical stimulation systems for locomotion.
    Kostov A; Andrews BJ; Popović DB; Stein RB; Armstrong WW
    IEEE Trans Biomed Eng; 1995 Jun; 42(6):541-51. PubMed ID: 7790010
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Joint angle control by FES using a feedback error learning controller.
    Kurosawa K; Futami R; Watanabe T; Hoshimiya N
    IEEE Trans Neural Syst Rehabil Eng; 2005 Sep; 13(3):359-71. PubMed ID: 16200759
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensory feedback control of upper- and lower-extremity motor prostheses.
    Phillips CA
    Crit Rev Biomed Eng; 1988; 16(2):105-40. PubMed ID: 3053043
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neuroprosthetics of the upper extremity--clinical application in spinal cord injury and future perspectives.
    Rupp R; Gerner HJ
    Biomed Tech (Berl); 2004 Apr; 49(4):93-8. PubMed ID: 15171589
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional restoration of elbow extension after spinal-cord injury using a neural network-based synergistic FES controller.
    Giuffrida JP; Crago PE
    IEEE Trans Neural Syst Rehabil Eng; 2005 Jun; 13(2):147-52. PubMed ID: 16003892
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Feedback in myoelectric prostheses.
    Scott RN
    Clin Orthop Relat Res; 1990 Jul; (256):58-63. PubMed ID: 2194730
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural signals for command control and feedback in functional neuromuscular stimulation: a review.
    Hoffer JA; Stein RB; Haugland MK; Sinkjaer T; Durfee WK; Schwartz AB; Loeb GE; Kantor C
    J Rehabil Res Dev; 1996 Apr; 33(2):145-57. PubMed ID: 8724170
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional electrical stimulation (FES) systems for restoration of motor function of paralyzed muscles--versatile systems and a portable system.
    Handa Y; Handa T; Ichie M; Murakami H; Hoshimiya N; Ishikawa S; Ohkubo K
    Front Med Biol Eng; 1992; 4(4):241-55. PubMed ID: 1476953
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Implementation of a physiologically identified PD feedback controller for regulating the active ankle torque during quiet stance.
    Vette AH; Masani K; Popovic MR
    IEEE Trans Neural Syst Rehabil Eng; 2007 Jun; 15(2):235-43. PubMed ID: 17601193
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adaptive control of cyclic movements as muscles fatigue using functional neuromuscular stimulation.
    Riess J; Abbas JJ
    IEEE Trans Neural Syst Rehabil Eng; 2001 Sep; 9(3):326-30. PubMed ID: 11561670
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strategies for generating prolonged functional standing using intramuscular stimulation or intraspinal microstimulation.
    Lau B; Guevremont L; Mushahwar VK
    IEEE Trans Neural Syst Rehabil Eng; 2007 Jun; 15(2):273-85. PubMed ID: 17601198
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sliding mode closed-loop control of FES: controlling the shank movement.
    Jezernik S; Wassink RG; Keller T
    IEEE Trans Biomed Eng; 2004 Feb; 51(2):263-72. PubMed ID: 14765699
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficacy and stability performance of traditional versus motion sensor-assisted strategies for FES standing.
    Braz GP; Russold M; Smith RM; Davis GM
    J Biomech; 2009 Jun; 42(9):1332-8. PubMed ID: 19349049
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonlinear modeling of FES-supported standing-up in paraplegia for selection of feedback sensors.
    Kamnik R; Shi JQ; Murray-Smith R; Bajd T
    IEEE Trans Neural Syst Rehabil Eng; 2005 Mar; 13(1):40-52. PubMed ID: 15813405
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Model-based development of neural prostheses for movement.
    Davoodi R; Urata C; Hauschild M; Khachani M; Loeb GE
    IEEE Trans Biomed Eng; 2007 Nov; 54(11):1909-18. PubMed ID: 18018686
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional electrical stimulation controlled by artificial neural networks: pilot experiments with simple movements are promising for rehabilitation applications.
    Ferrante S; Pedrocchi A; Iannò M; De Momi E; Ferrarin M; Ferrigno G
    Funct Neurol; 2004; 19(4):243-52. PubMed ID: 15776793
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strategies for providing upper extremity amputees with tactile and hand position feedback--moving closer to the bionic arm.
    Riso RR
    Technol Health Care; 1999; 7(6):401-9. PubMed ID: 10665673
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sensory feedback therapy and theoretical knowledge of motor control and learning.
    Mulder T; Hulstyn W
    Am J Phys Med; 1984 Oct; 63(5):226-44. PubMed ID: 6385730
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.