These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 10665676)

  • 21. An intelligent powered wheelchair to enable mobility of cognitively impaired older adults: an anticollision system.
    Mihailidis A; Elinas P; Boger J; Hoey J
    IEEE Trans Neural Syst Rehabil Eng; 2007 Mar; 15(1):136-43. PubMed ID: 17436886
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Automatic adaptive onset detection using an electromyogram with individual difference for control of a meal assistance robot.
    Zhang X; Wang X; Wang B; Sugi T; Nakamura M
    J Med Eng Technol; 2009; 33(4):322-7. PubMed ID: 19384708
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bio-inspired sensorization of a biomechatronic robot hand for the grasp-and-lift task.
    Edin BB; Ascari L; Beccai L; Roccella S; Cabibihan JJ; Carrozza MC
    Brain Res Bull; 2008 Apr; 75(6):785-95. PubMed ID: 18394525
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A novel compact compliant actuator design for rehabilitation robots.
    Yu H; Huang S; Thakor NV; Chen G; Toh SL; Sta Cruz M; Ghorbel Y; Zhu C
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650478. PubMed ID: 24187295
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparison of required operating forces between floor-based and overhead-mounted patient lifting devices.
    Rice MS; Woolley SM; Waters TR
    Ergonomics; 2009 Jan; 52(1):112-20. PubMed ID: 19308824
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Space robotics in the '90s.
    Ruoff CF
    Aerosp Am; 1989 Aug; 27(8):38-41, 46. PubMed ID: 11540489
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The development of two mobile gait rehabilitation systems.
    Seo KH; Lee JJ
    IEEE Trans Neural Syst Rehabil Eng; 2009 Apr; 17(2):156-66. PubMed ID: 19228564
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhancing patient freedom in rehabilitation robotics using gaze-based intention detection.
    Novak D; Riener R
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650507. PubMed ID: 24187322
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Localization and control of a rehabilitation mobile robot by close human-machine cooperation.
    Hoppenot P; Colle E
    IEEE Trans Neural Syst Rehabil Eng; 2001 Jun; 9(2):181-90. PubMed ID: 11474971
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Robotic assisted rehabilitation in Virtual Reality with the L-EXOS.
    Frisoli A; Bergamasco M; Carboncini MC; Rossi B
    Stud Health Technol Inform; 2009; 145():40-54. PubMed ID: 19592785
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Is effective force application in handrim wheelchair propulsion also efficient?
    Bregman DJ; van Drongelen S; Veeger HE
    Clin Biomech (Bristol); 2009 Jan; 24(1):13-9. PubMed ID: 18990473
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reference trajectory generation for rehabilitation robots: complementary limb motion estimation.
    Vallery H; van Asseldonk EH; Buss M; van der Kooij H
    IEEE Trans Neural Syst Rehabil Eng; 2009 Feb; 17(1):23-30. PubMed ID: 19211320
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Human voluntary activity integration in the control of a standing-up rehabilitation robot: a simulation study.
    Kamnik R; Bajd T
    Med Eng Phys; 2007 Nov; 29(9):1019-29. PubMed ID: 17098459
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Real-time haptic-teleoperated robotic system for motor control analysis.
    Shull PB; Gonzalez RV
    J Neurosci Methods; 2006 Mar; 151(2):194-9. PubMed ID: 16153712
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Real-time cooperating motion generation for man-machine systems and its application to medical technology.
    Seto F; Hirata Y; Kosuge K
    Technol Health Care; 2007; 15(2):121-30. PubMed ID: 17361056
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A six-degree-of-freedom passive arm with dynamic constraints (PADyC) for cardiac surgery application: preliminary experiments.
    Schneider O; Troccaz J
    Comput Aided Surg; 2001; 6(6):340-51. PubMed ID: 11954065
    [TBL] [Abstract][Full Text] [Related]  

  • 37. System for assisted mobility using eye movements based on electrooculography.
    Barea R; Boquete L; Mazo M; López E
    IEEE Trans Neural Syst Rehabil Eng; 2002 Dec; 10(4):209-18. PubMed ID: 12611358
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The smart wheelchair component system.
    Simpson R; Lopresti E; Hayashi S; Nourbakhsh I; Miller D
    J Rehabil Res Dev; 2004 May; 41(3B):429-42. PubMed ID: 15543461
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Engineering better wheelchairs to enhance community participation.
    Cooper RA; Boninger ML; Spaeth DM; Ding D; Guo S; Koontz AM; Fitzgerald SG; Cooper R; Kelleher A; Collins DM
    IEEE Trans Neural Syst Rehabil Eng; 2006 Dec; 14(4):438-55. PubMed ID: 17190036
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A rehabilitation robot with force-position hybrid fuzzy controller: hybrid fuzzy control of rehabilitation robot.
    Ju MS; Lin CC; Lin DH; Hwang IS; Chen SM
    IEEE Trans Neural Syst Rehabil Eng; 2005 Sep; 13(3):349-58. PubMed ID: 16200758
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.