These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 10666003)

  • 1. The inhibition of GLUT1 glucose transport and cytochalasin B binding activity by tricyclic antidepressants.
    Pinkofsky HB; Dwyer DS; Bradley RJ
    Life Sci; 2000; 66(3):271-8. PubMed ID: 10666003
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nicotinamide is not a substrate of the facilitative hexose transporter GLUT1.
    Reyes AM; Bustamante F; Rivas CI; Ortega M; Donnet C; Rossi JP; Fischbarg J; Vera JC
    Biochemistry; 2002 Jun; 41(25):8075-81. PubMed ID: 12069599
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid substrate translocation by the multisubunit, erythroid glucose transporter requires subunit associations but not cooperative ligand binding.
    Coderre PE; Cloherty EK; Zottola RJ; Carruthers A
    Biochemistry; 1995 Aug; 34(30):9762-73. PubMed ID: 7626647
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cadmium increases GLUT1 substrate binding affinity in vitro while reducing its cytochalasin B binding affinity.
    Lachaal M; Liu H; Kim S; Spangler RA; Jung CY
    Biochemistry; 1996 Nov; 35(47):14958-62. PubMed ID: 8942661
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of glucose-chlorambucil derivatives and their recognition by the human GLUT1 glucose transporter.
    Halmos T; Santarromana M; Antonakis K; Scherman D
    Eur J Pharmacol; 1996 Dec; 318(2-3):477-84. PubMed ID: 9016941
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of rat Glut4 glucose transporter expressed in the yeast Saccharomyces cerevisiae: comparison with Glut1 glucose transporter.
    Kasahara T; Kasahara M
    Biochim Biophys Acta; 1997 Feb; 1324(1):111-9. PubMed ID: 9059504
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activation of Glut1 glucose transporter in human erythrocytes.
    Zhang JZ; Ismail-Beigi F
    Arch Biochem Biophys; 1998 Aug; 356(1):86-92. PubMed ID: 9681995
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of GLUT1-mediated sugar transport by an antiport/uniport switch mechanism.
    Cloherty EK; Diamond DL; Heard KS; Carruthers A
    Biochemistry; 1996 Oct; 35(40):13231-9. PubMed ID: 8855962
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The red blood cell glucose transporter presents multiple, nucleotide-sensitive sugar exit sites.
    Cloherty EK; Levine KB; Carruthers A
    Biochemistry; 2001 Dec; 40(51):15549-61. PubMed ID: 11747430
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Caffeine inhibits glucose transport by binding at the GLUT1 nucleotide-binding site.
    Sage JM; Cura AJ; Lloyd KP; Carruthers A
    Am J Physiol Cell Physiol; 2015 May; 308(10):C827-34. PubMed ID: 25715702
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human erythrocyte sugar transport is incompatible with available carrier models.
    Cloherty EK; Heard KS; Carruthers A
    Biochemistry; 1996 Aug; 35(32):10411-21. PubMed ID: 8756697
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differentiation of erythrocyte-(GLUT1), liver-(GLUT2), and adipocyte-type (GLUT4) glucose transporters by binding of the inhibitory ligands cytochalasin B, forskolin, dipyridamole, and isobutylmethylxanthine.
    Hellwig B; Joost HG
    Mol Pharmacol; 1991 Sep; 40(3):383-9. PubMed ID: 1716731
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interactions of ATP, oestradiol, genistein and the anti-oestrogens, faslodex (ICI 182780) and tamoxifen, with the human erythrocyte glucose transporter, GLUT1.
    Afzal I; Cunningham P; Naftalin RJ
    Biochem J; 2002 Aug; 365(Pt 3):707-19. PubMed ID: 12133004
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The human erythrocyte sugar transporter presents two sugar import sites.
    Hamill S; Cloherty EK; Carruthers A
    Biochemistry; 1999 Dec; 38(51):16974-83. PubMed ID: 10606533
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glucose transporter oligomeric structure determines transporter function. Reversible redox-dependent interconversions of tetrameric and dimeric GLUT1.
    Hebert DN; Carruthers A
    J Biol Chem; 1992 Nov; 267(33):23829-38. PubMed ID: 1429721
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Immobilized membrane vesicle or proteoliposome affinity chromatography. Frontal analysis of interactions of cytochalasin B and D-glucose with the human red cell glucose transporter.
    Brekkan E; Lundqvist A; Lundahl P
    Biochemistry; 1996 Sep; 35(37):12141-5. PubMed ID: 8810921
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ethanol weakens cytochalasin B binding to the GLUT1 glucose transporter and drug partitioning into lipid bilayers.
    Lagerquist Hägglund C; Gottschalk I; Lundahl P
    J Chromatogr A; 2004 Mar; 1031(1-2):113-6. PubMed ID: 15058574
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chromatography on cells: analyses of solute interactions with the glucose transporter Glut1 in human red cells adsorbed on lectin-gel beads.
    Gottschalk I; Li YM; Lundahl P
    J Chromatogr B Biomed Sci Appl; 2000 Feb; 739(1):55-62. PubMed ID: 10744313
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conversion between two cytochalasin B-binding states of the human GLUT1 glucose transporter.
    Gottschalk I; Lundqvist A; Zeng CM; Hägglund CL; Zuo SS; Brekkan E; Eaker D; Lundahl P
    Eur J Biochem; 2000 Dec; 267(23):6875-82. PubMed ID: 11082199
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulation of GLUT1 intrinsic activity in clone 9 cells by inhibition of oxidative phosphorylation.
    Shi Y; Liu H; Vanderburg G; Samuel SJ; Ismail-Beigi F; Jung CY
    J Biol Chem; 1995 Sep; 270(37):21772-8. PubMed ID: 7665597
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.