BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 10666019)

  • 21. Gene expression profile analysis of 4-phenylbutyrate treatment of IB3-1 bronchial epithelial cell line demonstrates a major influence on heat-shock proteins.
    Wright JM; Zeitlin PL; Cebotaru L; Guggino SE; Guggino WB
    Physiol Genomics; 2004 Jan; 16(2):204-11. PubMed ID: 14583596
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sildenafil (Viagra) corrects DeltaF508-CFTR location in nasal epithelial cells from patients with cystic fibrosis.
    Dormer RL; Harris CM; Clark Z; Pereira MM; Doull IJ; Norez C; Becq F; McPherson MA
    Thorax; 2005 Jan; 60(1):55-9. PubMed ID: 15618584
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Hsc70 co-chaperone CHIP targets immature CFTR for proteasomal degradation.
    Meacham GC; Patterson C; Zhang W; Younger JM; Cyr DM
    Nat Cell Biol; 2001 Jan; 3(1):100-5. PubMed ID: 11146634
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A pilot clinical trial of oral sodium 4-phenylbutyrate (Buphenyl) in deltaF508-homozygous cystic fibrosis patients: partial restoration of nasal epithelial CFTR function.
    Rubenstein RC; Zeitlin PL
    Am J Respir Crit Care Med; 1998 Feb; 157(2):484-90. PubMed ID: 9476862
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Defective function of the cystic fibrosis-causing missense mutation G551D is recovered by genistein.
    Illek B; Zhang L; Lewis NC; Moss RB; Dong JY; Fischer H
    Am J Physiol; 1999 Oct; 277(4):C833-9. PubMed ID: 10516113
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rescue of DeltaF508-CFTR (cystic fibrosis transmembrane conductance regulator) by curcumin: involvement of the keratin 18 network.
    Lipecka J; Norez C; Bensalem N; Baudouin-Legros M; Planelles G; Becq F; Edelman A; Davezac N
    J Pharmacol Exp Ther; 2006 May; 317(2):500-5. PubMed ID: 16424149
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A domain mimic increases DeltaF508 CFTR trafficking and restores cAMP-stimulated anion secretion in cystic fibrosis epithelia.
    Clarke LL; Gawenis LR; Hwang TC; Walker NM; Gruis DB; Price EM
    Am J Physiol Cell Physiol; 2004 Jul; 287(1):C192-9. PubMed ID: 15028554
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Direct block of the cystic fibrosis transmembrane conductance regulator Cl(-) channel by butyrate and phenylbutyrate.
    Linsdell P
    Eur J Pharmacol; 2001 Jan; 411(3):255-60. PubMed ID: 11164382
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Partial restoration of cAMP-stimulated CFTR chloride channel activity in DeltaF508 cells by deoxyspergualin.
    Jiang C; Fang SL; Xiao YF; O'Connor SP; Nadler SG; Lee DW; Jefferson DM; Kaplan JM; Smith AE; Cheng SH
    Am J Physiol; 1998 Jul; 275(1):C171-8. PubMed ID: 9688848
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cystic fibrosis transmembrane conductance regulator: the first nucleotide binding fold targets the membrane with retention of its ATP binding function.
    Ko YH; Delannoy M; Pedersen PL
    Biochemistry; 1997 Apr; 36(16):5053-64. PubMed ID: 9125527
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rescue of ΔF508-CFTR trafficking via a GRASP-dependent unconventional secretion pathway.
    Gee HY; Noh SH; Tang BL; Kim KH; Lee MG
    Cell; 2011 Sep; 146(5):746-60. PubMed ID: 21884936
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The ΔF508 Mutation in the Cystic Fibrosis Transmembrane Conductance Regulator Is Associated With Progressive Insulin Resistance and Decreased Functional β-Cell Mass in Mice.
    Fontés G; Ghislain J; Benterki I; Zarrouki B; Trudel D; Berthiaume Y; Poitout V
    Diabetes; 2015 Dec; 64(12):4112-22. PubMed ID: 26283735
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Regulation of cystic fibrosis transmembrane conductance regulator by microRNA-145, -223, and -494 is altered in ΔF508 cystic fibrosis airway epithelium.
    Oglesby IK; Chotirmall SH; McElvaney NG; Greene CM
    J Immunol; 2013 Apr; 190(7):3354-62. PubMed ID: 23436935
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Surface expression of the cystic fibrosis transmembrane conductance regulator mutant DeltaF508 is markedly upregulated by combination treatment with sodium butyrate and low temperature.
    Heda GD; Marino CR
    Biochem Biophys Res Commun; 2000 May; 271(3):659-64. PubMed ID: 10814518
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cytoskeleton and CFTR.
    Edelman A
    Int J Biochem Cell Biol; 2014 Jul; 52():68-72. PubMed ID: 24685681
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization of wild-type and deltaF508 cystic fibrosis transmembrane regulator in human respiratory epithelia.
    Kreda SM; Mall M; Mengos A; Rochelle L; Yankaskas J; Riordan JR; Boucher RC
    Mol Biol Cell; 2005 May; 16(5):2154-67. PubMed ID: 15716351
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Functional cystic fibrosis transmembrane conductance regulator tagged with an epitope of the vesicular stomatis virus glycoprotein can be addressed to the apical domain of polarized cells.
    Costa de Beauregard MA; Edelman A; Chesnoy-Marchais D; Tondelier D; Lapillonne A; El Marjou F; Robine S; Louvard D
    Eur J Cell Biol; 2000 Nov; 79(11):795-802. PubMed ID: 11139142
    [TBL] [Abstract][Full Text] [Related]  

  • 38. BAG-1 stabilizes mutant F508del-CFTR in a ubiquitin-like-domain-dependent manner.
    Mendes F; Farinha CM; Felício V; Alves PC; Vieira I; Amaral MD
    Cell Physiol Biochem; 2012; 30(5):1120-33. PubMed ID: 23178238
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A foldable CFTR{Delta}F508 biogenic intermediate accumulates upon inhibition of the Hsc70-CHIP E3 ubiquitin ligase.
    Younger JM; Ren HY; Chen L; Fan CY; Fields A; Patterson C; Cyr DM
    J Cell Biol; 2004 Dec; 167(6):1075-85. PubMed ID: 15611333
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dynasore inhibits removal of wild-type and DeltaF508 cystic fibrosis transmembrane conductance regulator (CFTR) from the plasma membrane.
    Young A; Gentzsch M; Abban CY; Jia Y; Meneses PI; Bridges RJ; Bradbury NA
    Biochem J; 2009 Jul; 421(3):377-85. PubMed ID: 19442237
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.