These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 10666317)

  • 1. Electron paramagnetic resonance studies of radical species of proanthocyanidins and gallate esters.
    Bors W; Michel C; Stettmaier K
    Arch Biochem Biophys; 2000 Feb; 374(2):347-55. PubMed ID: 10666317
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemical studies of proanthocyanidins and hydrolyzable tannins.
    Bors W; Foo LY; Hertkorn N; Michel C; Stettmaier K
    Antioxid Redox Signal; 2001 Dec; 3(6):995-1008. PubMed ID: 11813994
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antioxidant capacity of flavanols and gallate esters: pulse radiolysis studies.
    Bors W; Michel C
    Free Radic Biol Med; 1999 Dec; 27(11-12):1413-26. PubMed ID: 10641736
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reaction pH and protein affect the oxidation products of beta-pentagalloyl glucose.
    Chen Y; Hagerman AE
    Free Radic Res; 2005 Feb; 39(2):117-24. PubMed ID: 15763959
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural characteristics for superoxide anion radical scavenging and productive activities of green tea polyphenols including proanthocyanidin dimers.
    Sato M; Toyazaki H; Yoshioka Y; Yokoi N; Yamasaki T
    Chem Pharm Bull (Tokyo); 2010 Jan; 58(1):98-102. PubMed ID: 20045974
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic analysis and mechanistic aspects of autoxidation of catechins.
    Mochizuki M; Yamazaki S; Kano K; Ikeda T
    Biochim Biophys Acta; 2002 Jan; 1569(1-3):35-44. PubMed ID: 11853955
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electron spin resonance study of free radicals formed from a procyanidin-rich pine (Pinus maritima) bark extract, pycnogenol.
    Guo Q; Zhao B; Packer L
    Free Radic Biol Med; 1999 Dec; 27(11-12):1308-12. PubMed ID: 10641725
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of oxidation products of (-)-epigallocatechin gallate and (-)-epigallocatechin with H(2)O(2).
    Zhu N; Huang TC; Yu Y; LaVoie EJ; Yang CS; Ho CT
    J Agric Food Chem; 2000 Apr; 48(4):979-81. PubMed ID: 10775337
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Free radicals generated during oxidation of green tea polyphenols: electron paramagnetic resonance spectroscopy combined with density functional theory calculations.
    Severino JF; Goodman BA; Kay CW; Stolze K; Tunega D; Reichenauer TG; Pirker KF
    Free Radic Biol Med; 2009 Apr; 46(8):1076-88. PubMed ID: 19439236
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Radical chemistry of epigallocatechin gallate and its relevance to protein damage.
    Hagerman AE; Dean RT; Davies MJ
    Arch Biochem Biophys; 2003 Jun; 414(1):115-20. PubMed ID: 12745262
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Membrane lipids protected from oxidation by red wine tannins: a proton NMR study.
    Furlan AL; Jobin ML; Buchoux S; Grélard A; Dufourc EJ; Géan J
    Biochimie; 2014 Dec; 107 Pt A():82-90. PubMed ID: 25063276
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three New Oxidation Products Produced from Epigallocatechin-3- O-gallate and Epicatechin-3-O-gallate.
    Li Y; Matsuo Y; Saito Y; Tanaka T
    Nat Prod Commun; 2016 Feb; 11(2):189-92. PubMed ID: 27032198
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Radical scavenging of white tea and its flavonoid constituents by electron paramagnetic resonance (EPR) spectroscopy.
    Azman NA; Peiró S; Fajarí L; Julià L; Almajano MP
    J Agric Food Chem; 2014 Jun; 62(25):5743-8. PubMed ID: 24885813
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Challenges and complexity of functionality evaluation of flavan-3-ol derivatives.
    Saito A
    Biosci Biotechnol Biochem; 2017 Jun; 81(6):1055-1060. PubMed ID: 28345490
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic characterization of the enzymatic and chemical oxidation of the catechins in green tea.
    Munoz-Munoz JL; García-Molina F; Molina-Alarcón M; Tudela J; García-Cánovas F; Rodríguez-López JN
    J Agric Food Chem; 2008 Oct; 56(19):9215-24. PubMed ID: 18788750
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of gallate and pyrogallol moieties on the intestinal absorption of (-)-epicatechin and (-)-epicatechin gallate.
    Tagashira T; Choshi T; Hibino S; Kamishikiryou J; Sugihara N
    J Food Sci; 2012 Oct; 77(10):H208-15. PubMed ID: 22938538
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Procyanidins from Myrothamnus flabellifolia.
    Anke J; Petereit F; Engelhardt C; Hensel A
    Nat Prod Res; 2008; 22(14):1237-48. PubMed ID: 18932087
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tannin composition affects the oxidative activities of tree leaves.
    Barbehenn RV; Jones CP; Karonen M; Salminen JP
    J Chem Ecol; 2006 Oct; 32(10):2235-51. PubMed ID: 17031601
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aggregation of a proline-rich protein induced by epigallocatechin gallate and condensed tannins: effect of protein glycosylation.
    Pascal C; Poncet-Legrand C; Cabane B; Vernhet A
    J Agric Food Chem; 2008 Aug; 56(15):6724-32. PubMed ID: 18642847
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing the antioxidant activity of polyphenols by CIDNP: from model compounds to green tea and red wine.
    Neshchadin D; Levinn R; Gescheidt G; Batchelor SN
    Chemistry; 2010 Jun; 16(23):7008-16. PubMed ID: 20440723
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.