These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
207 related articles for article (PubMed ID: 10666410)
1. Direct evidence for increased hydroxyl radicals originating from superoxide in the failing myocardium. Ide T; Tsutsui H; Kinugawa S; Suematsu N; Hayashidani S; Ichikawa K; Utsumi H; Machida Y; Egashira K; Takeshita A Circ Res; 2000 Feb; 86(2):152-7. PubMed ID: 10666410 [TBL] [Abstract][Full Text] [Related]
2. Enhanced generation of reactive oxygen species in the limb skeletal muscles from a murine infarct model of heart failure. Tsutsui H; Ide T; Hayashidani S; Suematsu N; Shiomi T; Wen J; Nakamura Ki ; Ichikawa K; Utsumi H; Takeshita A Circulation; 2001 Jul; 104(2):134-6. PubMed ID: 11447074 [TBL] [Abstract][Full Text] [Related]
3. Endogenous activation of mitochondrial KATP channels protects human failing myocardium from hydroxyl radical-induced stunning. Maack C; Dabew ER; Hohl M; Schäfers HJ; Böhm M Circ Res; 2009 Oct; 105(8):811-7. PubMed ID: 19729596 [TBL] [Abstract][Full Text] [Related]
4. Increased reactive oxygen species in rostral ventrolateral medulla contribute to neural mechanisms of hypertension in stroke-prone spontaneously hypertensive rats. Kishi T; Hirooka Y; Kimura Y; Ito K; Shimokawa H; Takeshita A Circulation; 2004 May; 109(19):2357-62. PubMed ID: 15117836 [TBL] [Abstract][Full Text] [Related]
5. Greater susceptibility of failing cardiac myocytes to oxygen free radical-mediated injury. Tsutsui H; Ide T; Hayashidani S; Suematsu N; Utsumi H; Nakamura R; Egashira K; Takeshita A Cardiovasc Res; 2001 Jan; 49(1):103-9. PubMed ID: 11121801 [TBL] [Abstract][Full Text] [Related]
6. Increased NADPH- and NADH-dependent production of superoxide and hydroxyl radical by microsomes after chronic ethanol treatment. Rashba-Step J; Turro NJ; Cederbaum AI Arch Biochem Biophys; 1993 Jan; 300(1):401-8. PubMed ID: 8380969 [TBL] [Abstract][Full Text] [Related]
7. Mitochondrial electron transport complex I is a potential source of oxygen free radicals in the failing myocardium. Ide T; Tsutsui H; Kinugawa S; Utsumi H; Kang D; Hattori N; Uchida K; Arimura Ki; Egashira K; Takeshita A Circ Res; 1999 Aug; 85(4):357-63. PubMed ID: 10455064 [TBL] [Abstract][Full Text] [Related]
8. Free-radical formation by mitomycin C and its novel analogs in cardiac microsomes and the perfused rat heart. Politi PM; Rajagopalan S; Sinha BK Biochim Biophys Acta; 1989 Sep; 992(3):341-8. PubMed ID: 2550081 [TBL] [Abstract][Full Text] [Related]
9. ESR studies on the production of reactive oxygen intermediates by rat liver microsomes in the presence of NADPH or NADH. Rashba-Step J; Turro NJ; Cederbaum AI Arch Biochem Biophys; 1993 Jan; 300(1):391-400. PubMed ID: 8380968 [TBL] [Abstract][Full Text] [Related]
10. Use of aromatic hydroxylation of phenylalanine to measure production of hydroxyl radicals after myocardial ischemia in vivo. Direct evidence for a pathogenetic role of the hydroxyl radical in myocardial stunning. Sun JZ; Kaur H; Halliwell B; Li XY; Bolli R Circ Res; 1993 Sep; 73(3):534-49. PubMed ID: 8394226 [TBL] [Abstract][Full Text] [Related]
11. Scavenging capacity of berry crops on superoxide radicals, hydrogen peroxide, hydroxyl radicals, and singlet oxygen. Wang SY; Jiao H J Agric Food Chem; 2000 Nov; 48(11):5677-84. PubMed ID: 11087538 [TBL] [Abstract][Full Text] [Related]
12. Effects of catechins on superoxide and hydroxyl radical. Kashima M Chem Pharm Bull (Tokyo); 1999 Feb; 47(2):279-83. PubMed ID: 10071858 [TBL] [Abstract][Full Text] [Related]
13. Spin traps inhibit formation of hydrogen peroxide via the dismutation of superoxide: implications for spin trapping the hydroxyl free radical. Britigan BE; Roeder TL; Buettner GR Biochim Biophys Acta; 1991 Oct; 1075(3):213-22. PubMed ID: 1659450 [TBL] [Abstract][Full Text] [Related]
14. Free radical production from normal and adriamycin-treated rat cardiac sarcosomes. Thornalley PJ; Dodd NJ Biochem Pharmacol; 1985 Mar; 34(5):669-74. PubMed ID: 2983734 [TBL] [Abstract][Full Text] [Related]
15. Treatment with dimethylthiourea prevents left ventricular remodeling and failure after experimental myocardial infarction in mice: role of oxidative stress. Kinugawa S; Tsutsui H; Hayashidani S; Ide T; Suematsu N; Satoh S; Utsumi H; Takeshita A Circ Res; 2000 Sep; 87(5):392-8. PubMed ID: 10969037 [TBL] [Abstract][Full Text] [Related]
16. Arsenite causes DNA damage in keratinocytes via generation of hydroxyl radicals. Shi H; Hudson LG; Ding W; Wang S; Cooper KL; Liu S; Chen Y; Shi X; Liu KJ Chem Res Toxicol; 2004 Jul; 17(7):871-8. PubMed ID: 15257611 [TBL] [Abstract][Full Text] [Related]
17. DNA strand scission by polycyclic aromatic hydrocarbon o-quinones: role of reactive oxygen species, Cu(II)/Cu(I) redox cycling, and o-semiquinone anion radicals, Flowers L; Ohnishi ST; Penning TM Biochemistry; 1997 Jul; 36(28):8640-8. PubMed ID: 9214311 [TBL] [Abstract][Full Text] [Related]
18. Hydroxyl radical generation during mitochondrial electron transfer and the formation of 8-hydroxydesoxyguanosine in mitochondrial DNA. Giulivi C; Boveris A; Cadenas E Arch Biochem Biophys; 1995 Feb; 316(2):909-16. PubMed ID: 7864650 [TBL] [Abstract][Full Text] [Related]
19. Hydroxyl radical generation by photosystem II. Pospísil P; Arató A; Krieger-Liszkay A; Rutherford AW Biochemistry; 2004 Jun; 43(21):6783-92. PubMed ID: 15157112 [TBL] [Abstract][Full Text] [Related]
20. Singlet oxygen generation in the superoxide reaction. Mao Y; Zang L; Shi X Biochem Mol Biol Int; 1995 May; 36(1):227-32. PubMed ID: 7663419 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]