BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 10666684)

  • 1. The "gene dosage effect" hypothesis versus the "amplified developmental instability" hypothesis in Down syndrome.
    Pritchard MA; Kola I
    J Neural Transm Suppl; 1999; 57():293-303. PubMed ID: 10666684
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mental retardation in Down syndrome: from gene dosage imbalance to molecular and cellular mechanisms.
    Rachidi M; Lopes C
    Neurosci Res; 2007 Dec; 59(4):349-69. PubMed ID: 17897742
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein levels of genes encoded on chromosome 21 in fetal Down syndrome brain: challenging the gene dosage effect hypothesis (Part I).
    Cheon MS; Kim SH; Yaspo ML; Blasi F; Aoki Y; Melen K; Lubec G
    Amino Acids; 2003; 24(1-2):111-7. PubMed ID: 12624742
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Down syndrome--a gene dosage disease caused by trisomy of genes within a small segment of the long arm of chromosome 21, exemplified by the study of effects from the superoxide-dismutase type 1 (SOD-1) gene.
    Annerén G; Edman B
    APMIS Suppl; 1993; 40():71-9. PubMed ID: 8311993
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence against the current hypothesis of "gene dosage effects" of trisomy 21: ets-2, encoded on chromosome 21" is not overexpressed in hearts of patients with Down Syndrome.
    Greber-Platzer S; Schatzmann-Turhani D; Wollenek G; Lubec G
    Biochem Biophys Res Commun; 1999 Jan; 254(2):395-9. PubMed ID: 9918849
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dosage-dependent over-expression of genes in the trisomic region of Ts1Cje mouse model for Down syndrome.
    Amano K; Sago H; Uchikawa C; Suzuki T; Kotliarova SE; Nukina N; Epstein CJ; Yamakawa K
    Hum Mol Genet; 2004 Jul; 13(13):1333-40. PubMed ID: 15138197
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein levels of genes encoded on chromosome 21 in fetal Down syndrome brain: challenging the gene dosage effect hypothesis (Part III).
    Cheon MS; Kim SH; Ovod V; Kopitar Jerala N; Morgan JI; Hatefi Y; Ijuin T; Takenawa T; Lubec G
    Amino Acids; 2003; 24(1-2):127-34. PubMed ID: 12624744
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Down syndrome--a disruption of homeostasis.
    Shapiro BL
    Am J Med Genet; 1983 Feb; 14(2):241-69. PubMed ID: 6220605
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using mouse models to explore genotype-phenotype relationship in Down syndrome.
    Salehi A; Faizi M; Belichenko PV; Mobley WC
    Ment Retard Dev Disabil Res Rev; 2007; 13(3):207-14. PubMed ID: 17910089
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trisomy for the Down syndrome 'critical region' is necessary but not sufficient for brain phenotypes of trisomic mice.
    Olson LE; Roper RJ; Sengstaken CL; Peterson EA; Aquino V; Galdzicki Z; Siarey R; Pletnikov M; Moran TH; Reeves RH
    Hum Mol Genet; 2007 Apr; 16(7):774-82. PubMed ID: 17339268
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein levels of genes encoded on chromosome 21 in fetal Down syndrome brain: challenging the gene dosage effect hypothesis (Part II).
    Cheon MS; Bajo M; Kim SH; Claudio JO; Stewart AK; Patterson D; Kruger WD; Kondoh H; Lubec G
    Amino Acids; 2003; 24(1-2):119-25. PubMed ID: 12624743
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Parallels of craniofacial maldevelopment in Down syndrome and Ts65Dn mice.
    Richtsmeier JT; Baxter LL; Reeves RH
    Dev Dyn; 2000 Feb; 217(2):137-45. PubMed ID: 10706138
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular aspects of Down syndrome.
    Dutta S; Nandagopal K; Gangopadhyay PK; Mukhopadhyay K
    Indian Pediatr; 2005 Apr; 42(4):339-44. PubMed ID: 15876595
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Down syndrome gene dosage imbalance on cerebellum development.
    Moldrich RX; Dauphinot L; Laffaire J; Rossier J; Potier MC
    Prog Neurobiol; 2007 Jun; 82(2):87-94. PubMed ID: 17408845
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic mechanisms involved in the phenotype of Down syndrome.
    Patterson D
    Ment Retard Dev Disabil Res Rev; 2007; 13(3):199-206. PubMed ID: 17910086
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The brain in Down syndrome (TRISOMY 21).
    Lubec G; Engidawork E
    J Neurol; 2002 Oct; 249(10):1347-56. PubMed ID: 12382149
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptional disruptions in Down syndrome: a case study in the Ts1Cje mouse cerebellum during post-natal development.
    Potier MC; Rivals I; Mercier G; Ettwiller L; Moldrich RX; Laffaire J; Personnaz L; Rossier J; Dauphinot L
    J Neurochem; 2006 Apr; 97 Suppl 1():104-9. PubMed ID: 16635258
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chromosome 21 and down syndrome: from genomics to pathophysiology.
    Antonarakis SE; Lyle R; Dermitzakis ET; Reymond A; Deutsch S
    Nat Rev Genet; 2004 Oct; 5(10):725-38. PubMed ID: 15510164
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cooperation to amplify gene-dosage-imbalance effects.
    de la Luna S; Estivill X
    Trends Mol Med; 2006 Oct; 12(10):451-4. PubMed ID: 16919501
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein expression of BACE1, BACE2 and APP in Down syndrome brains.
    Cheon MS; Dierssen M; Kim SH; Lubec G
    Amino Acids; 2008 Aug; 35(2):339-43. PubMed ID: 18163181
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.