These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 1066684)

  • 1. Direct spectroscopic observation of inner and outer hydrocarbon chains of lipid bilayer vesicles.
    Longmuir KJ; Dahlquist FW
    Proc Natl Acad Sci U S A; 1976 Aug; 73(8):2716-9. PubMed ID: 1066684
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single bilayer vesicles prepared without sonication. Physico-chemical properties.
    Brunner J; Skrabal P; Hauser H
    Biochim Biophys Acta; 1976 Dec; 455(2):322-31. PubMed ID: 1033769
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of surface curvature on the head-group structure and phase transition properties of phospholipid bilayer vesicles.
    Eigenberg KE; Chan SI
    Biochim Biophys Acta; 1980 Jun; 599(1):330-5. PubMed ID: 7397156
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NMR observation of gramicidin A' in phosphatidylcholine vesicles.
    Feigenson GW; Meers PR; Kingsley PB
    Biochim Biophys Acta; 1977 Dec; 471(3):487-91. PubMed ID: 72565
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nuclear magnetic resonance studies of lipid-protein interactions. A model of the dynamics and energetics of phosphatidylcholine bilayers that contain cytochrome c oxidase.
    Longmuir KJ; Capaldi RA; Dahlquist FW
    Biochemistry; 1977 Dec; 16(26):5746-55. PubMed ID: 201275
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Outside-inside distribution and translocation of lysophosphatidylcholine in phosphatidylcholine vesicles as determinied by 13C-NMR using (N-13CH3)-enriched lipids.
    de Kruyff B; van den Besselaar AM; van Deenen LL
    Biochim Biophys Acta; 1977 Mar; 465(3):443-53. PubMed ID: 836836
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of paramagnetic shift reagents on the 13C nuclear magnetic resonance spectra of egg phosphatidylcholine enriched with 13C in the N-methyl carbons.
    Sears B; Hutton WC; Thompson TE
    Biochemistry; 1976 Apr; 15(8):1635-9. PubMed ID: 178350
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alamethicin-mediated fusion of lecithin vesicles.
    Lau AL; Chan SI
    Proc Natl Acad Sci U S A; 1975 Jun; 72(6):2170-4. PubMed ID: 1056022
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of viscosity on the width of the methylene proton magnetic resonance line in sonicated phospholipid bilayer vesicles.
    Mackay AL; Burnell EE; Nichol CP; Weeks G; Bloom M; Valic MI
    FEBS Lett; 1978 Apr; 88(1):97-100. PubMed ID: 639998
    [No Abstract]   [Full Text] [Related]  

  • 10. Differential interaction of cholesterol with phosphatidylcholine on the inner and outer surfaces of lipid bilayer vesicles.
    Huang CH; Sipe JP; Chow ST; Martin RB
    Proc Natl Acad Sci U S A; 1974 Feb; 71(2):359-62. PubMed ID: 4521808
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The phospholipid packing arrangement in small bilayer vesicles as revealed by proton magnetic resonance studies at 500 MHz.
    Schuh JR; Banerjee U; Müller L; Chan SI
    Biochim Biophys Acta; 1982 May; 687(2):219-25. PubMed ID: 7093252
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction of the antifolate antibiotic trimethoprim with phosphatidylcholine membranes: a 13C and 31P nuclear magnetic resonance study.
    Painter GR; Grunwald R; Roth B
    Mol Pharmacol; 1988 May; 33(5):551-8. PubMed ID: 3367902
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 31P and 19F NMR studies of glycophorin-reconstituted membranes: preferential interaction of glycophorin with phosphatidylserine.
    Ong RL
    J Membr Biol; 1984; 78(1):1-7. PubMed ID: 6708091
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distribution of lysophosphatidylcholine in single bilayer vesicles prepared without sonication.
    de Oliveira Filgueiras OM; van den Besselaar AM; van den Bosch H
    Biochim Biophys Acta; 1977 Dec; 471(3):391-400. PubMed ID: 921989
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein-mediated transbilayer movement of lysophosphatidylcholine in glycophorin-containing vesicles.
    van Zoelen EJ; de Kruijff B; van Deenen LL
    Biochim Biophys Acta; 1978 Mar; 508(1):97-108. PubMed ID: 629969
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Location of ubiquinone-10 (CoQ-10) in phospholipid vesicles.
    Michaelis L; Moore MJ
    Biochim Biophys Acta; 1985 Nov; 821(1):121-9. PubMed ID: 4063355
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid transbilayer movement of phospholipids induced by an asymmetrical perturbation of the bilayer.
    De Kruijff B; Baken P
    Biochim Biophys Acta; 1978 Feb; 507(1):38-47. PubMed ID: 623748
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Studies of highly asymmetric mixed-chain diacyl phosphatidylcholines that form mixed-interdigitated gel phases: Fourier transform infrared and 2H NMR spectroscopic studies of hydrocarbon chain conformation and orientational order in the liquid-crystalline state.
    Lewis RN; McElhaney RN; Monck MA; Cullis PR
    Biophys J; 1994 Jul; 67(1):197-207. PubMed ID: 7918988
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 13-C NMR investigation of phospholipid membranes with the aid of shift reagents.
    Shapiro YE; Viktorov AV; Volkova VI; Barsukov LI; Bystrov VF; Bergelson LD
    Chem Phys Lipids; 1975 May; 14(3):227-32. PubMed ID: 165014
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lysophosphatidylcholine stabilizes small unilamellar phosphatidylcholine vesicles. Phosphorus-31 NMR evidence for the "wedge" effect.
    Kumar VV; Malewicz B; Baumann WJ
    Biophys J; 1989 Apr; 55(4):789-92. PubMed ID: 2720071
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.