These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 10667721)

  • 1. A microdomain-structured synthetic high-flux hollow-fiber membrane for renal replacement therapy.
    Hoenich NA; Stamp S; Roberts SJ
    ASAIO J; 2000; 46(1):70-5. PubMed ID: 10667721
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Clinical characterization of a new polymeric membrane for use in renal replacement therapy.
    Hoenich NA; Katopodis KP
    Biomaterials; 2002 Sep; 23(18):3853-8. PubMed ID: 12164189
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Clinical performance of a new high-flux synthetic membrane.
    Hoenich NA; Stamp S
    Am J Kidney Dis; 2000 Aug; 36(2):345-52. PubMed ID: 10922313
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clinical characterization of Dicea a new cellulose membrane for haemodialysis.
    Hoenich NA; Woffindin C; Cox PJ; Goldfinch M; Roberts SJ
    Clin Nephrol; 1997 Oct; 48(4):253-9. PubMed ID: 9352161
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison of three brands of polysulfone membranes.
    Hoenich NA; Woffindin C; Brennan A; Cox PJ; Matthews JN; Goldfinch M
    J Am Soc Nephrol; 1996 Jun; 7(6):871-6. PubMed ID: 8793795
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of a new polyamide membrane (Polyflux 130) in high-flux dialysis.
    Schaefer RM; Gilge U; Goehl H; Heidland A
    Blood Purif; 1990; 8(1):23-31. PubMed ID: 2198889
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complement activation by dialysis membranes and its association with secondary membrane formation and surface charge.
    Melchior P; Erlenkötter A; Zawada AM; Delinski D; Schall C; Stauss-Grabo M; Kennedy JP
    Artif Organs; 2021 Jul; 45(7):770-778. PubMed ID: 33326619
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Performance and Hemocompatibility of a Novel Polysulfone Dialyzer: A Randomized Controlled Trial.
    Ehlerding G; Erlenkötter A; Gauly A; Griesshaber B; Kennedy J; Rauber L; Ries W; Schmidt-Gürtler H; Stauss-Grabo M; Wagner S; Zawada AM; Zschätzsch S; Kempkes-Koch M
    Kidney360; 2021 Jun; 2(6):937-947. PubMed ID: 35373083
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clinical characterisation of polysulfone LS membrane for renal replacement therapy.
    Hoenich NA
    Int J Artif Organs; 2000 Jun; 23(6):365-70. PubMed ID: 10919753
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthetically modified cellulose: an alternative to synthetic membranes for use in haemodialysis?
    Hoenich NA; Woffindin C; Stamp S; Roberts SJ; Turnbull J
    Biomaterials; 1997 Oct; 18(19):1299-303. PubMed ID: 9307219
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Beta2-microglobulin and low-flux synthetic dialyzers.
    Klinkmann H; Buscaroli A; Stefoni S
    Artif Organs; 1998 Jul; 22(7):585-90. PubMed ID: 9684696
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new synthetic dialyzer with advanced permselectivity for enhanced low-molecular weight protein removal.
    Krieter DH; Lemke HD; Wanner C
    Artif Organs; 2008 Jul; 32(7):547-54. PubMed ID: 18638309
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dialysis membrane-dependent removal of middle molecules during hemodiafiltration: the beta2-microglobulin/albumin relationship.
    Ahrenholz PG; Winkler RE; Michelsen A; Lang DA; Bowry SK
    Clin Nephrol; 2004 Jul; 62(1):21-8. PubMed ID: 15267009
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polyvinylpyrrolidone in hemodialysis membranes: Impact on platelet loss during hemodialysis.
    Zawada AM; Melchior P; Erlenkötter A; Delinski D; Stauss-Grabo M; Kennedy JP
    Hemodial Int; 2021 Oct; 25(4):498-506. PubMed ID: 34085391
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biocompatibility of hemodialysis membranes: evaluation in an ovine model.
    Burhop KE; Johnson RJ; Simpson J; Chenoweth DE; Borgia J
    J Lab Clin Med; 1993 Feb; 121(2):276-93. PubMed ID: 8433041
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increased binding of beta-2-microglobulin to blood cells in dialysis patients treated with high-flux dialyzers compared with low-flux membranes contributed to reduced beta-2-microglobulin concentrations. Results of a cross-over study.
    Traut M; Haufe CC; Eismann U; Deppisch RM; Stein G; Wolf G
    Blood Purif; 2007; 25(5-6):432-40. PubMed ID: 17957097
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Does an alteration of dialyzer design and geometry affect biocompatibility parameters?
    Opatrný K; Krouzzecký A; Polanská K; Mares J; Tomsů M; Bowry SK; Vienken J
    Hemodial Int; 2006 Apr; 10(2):201-8. PubMed ID: 16623675
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro and in vivo biocompatibility of substituted cellulose and synthetic membranes.
    Mandolfo S; Tetta C; David S; Gervasio R; Ognibene D; Wratten ML; Tessore E; Imbasciati E
    Int J Artif Organs; 1997 Nov; 20(11):603-9. PubMed ID: 9464869
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The impact of standard high-flux polysulfone versus novel high-flux polysulfone dialysis membranes on inflammatory markers: a randomized, single-blinded, controlled clinical trial.
    Kerr PG; Sutherland WH; de Jong S; Vaithalingham I; Williams SM; Walker RJ
    Am J Kidney Dis; 2007 Apr; 49(4):533-9. PubMed ID: 17386321
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reprocessed (high-flux) Polyflux dialyzers resist trans-membrane endotoxin passage and attenuate inflammatory markers.
    Teehan GS; Guo D; Perianayagam MC; Balakrishnan VS; Pereira BJ; Jaber BL
    Blood Purif; 2004; 22(4):329-37. PubMed ID: 15240988
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.