BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 10667994)

  • 1. Responses to putative second messengers and odorants in water nose olfactory neurons of Xenopus laevis.
    Iida A; Kashiwayanagi M
    Chem Senses; 2000 Feb; 25(1):55-9. PubMed ID: 10667994
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Responses of Xenopus laevis water nose to water-soluble and volatile odorants.
    Iida A; Kashiwayanagi M
    J Gen Physiol; 1999 Jul; 114(1):85-92. PubMed ID: 10398694
    [TBL] [Abstract][Full Text] [Related]  

  • 3. cAMP-independent responses of olfactory neurons in Xenopus laevis tadpoles and their projection onto olfactory bulb neurons.
    Manzini I; Rössler W; Schild D
    J Physiol; 2002 Dec; 545(2):475-84. PubMed ID: 12456827
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of a nonmammalian Golf subtype: functional role in olfactory signaling of airborne odorants in Xenopus laevis.
    Mezler M; Fleischer J; Conzelmann S; Korchi A; Widmayer P; Breer H; Boekhoff I
    J Comp Neurol; 2001 Oct; 439(4):400-10. PubMed ID: 11596062
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Odorant responses of Xenopus laevis tadpole olfactory neurons: a comparison between preparations.
    Manzini I; Peters F; Schild D
    J Neurosci Methods; 2002 Dec; 121(2):159-67. PubMed ID: 12468006
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oscillatory current responses of olfactory receptor neurons to odorants and computer simulation based on a cyclic AMP transduction model.
    Suzuki N; Takahata M; Sato K
    Chem Senses; 2002 Nov; 27(9):789-801. PubMed ID: 12438204
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibitory K+ current activated by odorants in toad olfactory neurons.
    Morales B; Ugarte G; Labarca P; Bacigalupo J
    Proc Biol Sci; 1994 Sep; 257(1350):235-42. PubMed ID: 7991632
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cross-adaptation between olfactory responses induced by two subgroups of odorant molecules.
    Takeuchi H; Imanaka Y; Hirono J; Kurahashi T
    J Gen Physiol; 2003 Sep; 122(3):255-64. PubMed ID: 12939391
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Drugs affecting phospholipase C-mediated signal transduction block the olfactory cyclic nucleotide-gated current of adult zebrafish.
    Ma L; Michel WC
    J Neurophysiol; 1998 Mar; 79(3):1183-92. PubMed ID: 9497400
    [TBL] [Abstract][Full Text] [Related]  

  • 10. cAMP-independent olfactory transduction of amino acids in Xenopus laevis tadpoles.
    Manzini I; Schild D
    J Physiol; 2003 Aug; 551(Pt 1):115-23. PubMed ID: 12824450
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Odorant-induced currents in intact patches from rat olfactory receptor neurons: theory and experiment.
    Chiu P; Lynch JW; Barry PH
    Biophys J; 1997 Mar; 72(3):1442-57. PubMed ID: 9138590
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inositol 1,4,5-trisphosphate and adenophostin analogues induce responses in turtle olfactory sensory neurons.
    Kashiwayanagi M; Tatani K; Shuto S; Matsuda A
    Eur J Neurosci; 2000 Feb; 12(2):606-12. PubMed ID: 10712640
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Existence of multiple receptors in single neurons: responses of single bullfrog olfactory neurons to many cAMP-dependent and independent odorants.
    Kashiwayanagi M; Shimano K; Kurihara K
    Brain Res; 1996 Nov; 738(2):222-8. PubMed ID: 8955516
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bimodal processing of olfactory information in an amphibian nose: odor responses segregate into a medial and a lateral stream.
    Gliem S; Syed AS; Sansone A; Kludt E; Tantalaki E; Hassenklöver T; Korsching SI; Manzini I
    Cell Mol Life Sci; 2013 Jun; 70(11):1965-84. PubMed ID: 23269434
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An analysis of odorant-induced currents in on-cell patches on mammalian olfactory receptor neurons.
    Barry PH; Chiu P; Lynch JW
    Ann N Y Acad Sci; 1998 Nov; 855():208-11. PubMed ID: 9929607
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of cGMP and sodium nitroprusside on odor responses in turtle olfactory sensory neurons.
    Inamura K; Kashiwayanagi M; Kurihara K
    Am J Physiol; 1998 Nov; 275(5):C1201-6. PubMed ID: 9814967
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ATP activates both receptor and sustentacular supporting cells in the olfactory epithelium of Xenopus laevis tadpoles.
    Czesnik D; Kuduz J; Schild D; Manzini I
    Eur J Neurosci; 2006 Jan; 23(1):119-28. PubMed ID: 16420422
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Blocking adenylyl cyclase inhibits olfactory generator currents induced by "IP(3)-odors".
    Chen S; Lane AP; Bock R; Leinders-Zufall T; Zufall F
    J Neurophysiol; 2000 Jul; 84(1):575-80. PubMed ID: 10899229
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A large contribution of a cyclic AMP-independent pathway to turtle olfactory transduction.
    Kashiwayanagi M; Kawahara H; Hanada T; Kurihara K
    J Gen Physiol; 1994 Jun; 103(6):957-74. PubMed ID: 7523576
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly specific responses to amine odorants of individual olfactory receptor neurons in situ.
    Gliem S; Schild D; Manzini I
    Eur J Neurosci; 2009 Jun; 29(12):2315-26. PubMed ID: 19490026
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.