BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

62 related articles for article (PubMed ID: 10668915)

  • 21. Poly(ADP-ribose) polymerase as a drug target for cardiovascular disease and cancer: an update.
    Horvath EM; Szabó C
    Drug News Perspect; 2007 Apr; 20(3):171-81. PubMed ID: 17520094
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Adenine nucleotide metabolism and cell fate after oxidant exposure of rat cortical neurons: effects of inhibition of poly(ADP-ribose) polymerase.
    Aito H; Aalto KT; Raivio KO
    Brain Res; 2004 Jul; 1013(1):117-24. PubMed ID: 15196974
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular mechanisms of beta-cell destruction in IDDM: the role of nicotinamide.
    Gale EA
    Horm Res; 1996; 45 Suppl 1():39-43. PubMed ID: 8805029
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Inactivation of the poly(ADP-ribose) polymerase gene affects oxygen radical and nitric oxide toxicity in islet cells.
    Heller B; Wang ZQ; Wagner EF; Radons J; Bürkle A; Fehsel K; Burkart V; Kolb H
    J Biol Chem; 1995 May; 270(19):11176-80. PubMed ID: 7744749
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Synthesis of isoquinolinone-based tricycles as novel poly(ADP-ribose) polymerase-1 (PARP-1) inhibitors.
    Chen J; Peng H; He J; Huan X; Miao Z; Yang C
    Bioorg Med Chem Lett; 2014 Jun; 24(12):2669-73. PubMed ID: 24815508
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nitric oxide generation and poly(ADP ribose) polymerase activation precede beta-cell death in rats with a single high-dose injection of streptozotocin.
    Wada R; Yagihashi S
    Virchows Arch; 2004 Apr; 444(4):375-82. PubMed ID: 14762714
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Influence of poly(ADP-ribose) polymerase inhibitors on some parameters of oxidative stress in blood leukocytes of rats with experimental diabetes].
    Huzyk MM; Diakun KO; Ianits'ka LV; Kuchmerovs'ka TM
    Ukr Biokhim Zh (1999); 2013; 85(1):62-70. PubMed ID: 23534291
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Analysis of oxygen radical toxicity in pancreatic islets at the single cell level.
    Heller B; Bürkle A; Radons J; Fengler E; Jalowy A; Müller M; Burkart V; Kolb H
    Biol Chem Hoppe Seyler; 1994 Sep; 375(9):597-602. PubMed ID: 7840901
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Toxicity of chemically generated nitric oxide towards pancreatic islet cells can be prevented by nicotinamide.
    Kallmann B; Burkart V; Kröncke KD; Kolb-Bachofen V; Kolb H
    Life Sci; 1992; 51(9):671-8. PubMed ID: 1386894
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synthesis and biological evaluation of isoindoloisoquinolinone, pyroloisoquinolinone and benzoquinazolinone derivatives as poly(ADP-ribose) polymerase-1 inhibitors.
    Suyavaran A; Ramamurthy C; Mareeswaran R; Shanthi YV; Selvakumar J; Mangalaraj S; Kumar MS; Ramanathan CR; Thirunavukkarasu C
    Bioorg Med Chem; 2015 Feb; 23(3):488-98. PubMed ID: 25555733
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Protection of islet cells from inflammatory cell death in vitro.
    Burkart V; Kolb H
    Clin Exp Immunol; 1993 Aug; 93(2):273-8. PubMed ID: 8348756
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Suppression of nitric oxide toxicity in islet cells by alpha-tocopherol.
    Burkart V; Gross-Eick A; Bellmann K; Radons J; Kolb H
    FEBS Lett; 1995 May; 364(3):259-63. PubMed ID: 7758579
    [TBL] [Abstract][Full Text] [Related]  

  • 33. DNA-damage and NAD(+)-depletion are initial events in oxygen radical induced islet cell death.
    Heller B; Bürkle A; Radons J; Fengler E; Müller M; Burkart V; Kolb H
    Adv Exp Med Biol; 1997; 426():329-34. PubMed ID: 9544290
    [No Abstract]   [Full Text] [Related]  

  • 34. Reduced glutamate decarboxylase activity in rat islet beta cells which survived streptozotocin-induced cytotoxicity.
    Ling Z; Malaisse-Lagae F; Malaisse WJ; Pipeleers D
    FEBS Lett; 1993 Jun; 324(3):262-4. PubMed ID: 8405362
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nicotinamide and streptozotocin diabetes in the rat. Factors influencing the effectiveness of the protection.
    Masiello P; Bergamini E
    Experientia; 1977 Sep; 33(9):1246-7. PubMed ID: 142654
    [No Abstract]   [Full Text] [Related]  

  • 36. Poly(ADP-ribose) polymerase inhibition: past, present and future.
    Curtin NJ; Szabo C
    Nat Rev Drug Discov; 2020 Oct; 19(10):711-736. PubMed ID: 32884152
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The role of ADP-ribose metabolism in metabolic regulation, adipose tissue differentiation, and metabolism.
    Szántó M; Bai P
    Genes Dev; 2020 Mar; 34(5-6):321-340. PubMed ID: 32029456
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pathogenesis of Type 1 Diabetes Mellitus and Rodent Experimental Models.
    Gvazava IG; Rogovaya OS; Borisov MA; Vorotelyak EA; Vasiliev AV
    Acta Naturae; 2018; 10(1):24-33. PubMed ID: 29713516
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nicotinamide exerts antioxidative effects on senescent cells.
    Kwak JY; Ham HJ; Kim CM; Hwang ES
    Mol Cells; 2015 Mar; 38(3):229-35. PubMed ID: 25600149
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Crosstalk between poly(ADP-ribose) polymerase and sirtuin enzymes.
    Cantó C; Sauve AA; Bai P
    Mol Aspects Med; 2013 Dec; 34(6):1168-201. PubMed ID: 23357756
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.