BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 10669288)

  • 1. High-performance liquid chromatography method for the characterization of rhamnolipid mixtures produced by pseudomonas aeruginosa UG2 on corn oil.
    Mata-Sandoval JC; Karns J; Torrents A
    J Chromatogr A; 1999 Dec; 864(2):211-20. PubMed ID: 10669288
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of nutritional and environmental conditions on the production and composition of rhamnolipids by P. aeruginosa UG2.
    Mata-Sandoval JC; Karns J; Torrents A
    Microbiol Res; 2001 Mar; 155(4):249-56. PubMed ID: 11297354
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pseudomonas aeruginosa UG2 rhamnolipid biosurfactants: structural characterization and their use in removing hydrophobic compounds from soil.
    Van Dyke MI; Couture P; Brauer M; Lee H; Trevors JT
    Can J Microbiol; 1993 Nov; 39(11):1071-8. PubMed ID: 8306209
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production and physico-chemical characterization of a biosurfactant produced by Pseudomonas aeruginosa OBP1 isolated from petroleum sludge.
    Bharali P; Konwar BK
    Appl Biochem Biotechnol; 2011 Aug; 164(8):1444-60. PubMed ID: 21468636
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-performance liquid chromatographic determination of the rhamnolipids produced by Pseudomonas aeruginosa.
    Schenk T; Schuphan I; Schmidt B
    J Chromatogr A; 1995 Feb; 693(1):7-13. PubMed ID: 7697163
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biosurfactant production by Pseudomonas aeruginosa A41 using palm oil as carbon source.
    Thaniyavarn J; Chongchin A; Wanitsuksombut N; Thaniyavarn S; Pinphanichakarn P; Leepipatpiboon N; Morikawa M; Kanaya S
    J Gen Appl Microbiol; 2006 Aug; 52(4):215-22. PubMed ID: 17116970
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Liquid chromatography/mass spectrometry analysis of mixtures of rhamnolipids produced by Pseudomonas aeruginosa strain 57RP grown on mannitol or naphthalene.
    Déziel E; Lépine F; Dennie D; Boismenu D; Mamer OA; Villemur R
    Biochim Biophys Acta; 1999 Sep; 1440(2-3):244-52. PubMed ID: 10521708
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Production and characterization of rhamnolipid using palm oil agricultural refinery waste.
    Radzuan MN; Banat IM; Winterburn J
    Bioresour Technol; 2017 Feb; 225():99-105. PubMed ID: 27888734
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heterologous production of Pseudomonas aeruginosa EMS1 biosurfactant in Pseudomonas putida.
    Cha M; Lee N; Kim M; Kim M; Lee S
    Bioresour Technol; 2008 May; 99(7):2192-9. PubMed ID: 17611103
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative determination of rhamnolipid using HPLC-UV through carboxyl labeling.
    Zhou J; Miao SJ; Yang SZ; Liu JF; Gang HZ; Mu BZ
    Biotechnol Appl Biochem; 2023 Dec; 70(6):1806-1816. PubMed ID: 37278163
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical and physical characterization of four interfacial-active rhamnolipids from Pseudomonas spec. DSM 2874 grown on n-alkanes.
    Syldatk C; Lang S; Wagner F; Wray V; Witte L
    Z Naturforsch C Biosci; 1985; 40(1-2):51-60. PubMed ID: 3993180
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Production and characterization of rhamnolipid biosurfactant from waste frying coconut oil using a novel Pseudomonas aeruginosa D.
    George S; Jayachandran K
    J Appl Microbiol; 2013 Feb; 114(2):373-83. PubMed ID: 23164038
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioconversion of agro-industrial by-products in rhamnolipids toward applications in enhanced oil recovery and bioremediation.
    Gudiña EJ; Rodrigues AI; Alves E; Domingues MR; Teixeira JA; Rodrigues LR
    Bioresour Technol; 2015 Feb; 177():87-93. PubMed ID: 25479398
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural characterization of rhamnolipid produced by Pseudomonas aeruginosa strain FIN2 isolated from oil reservoir water.
    Liu JF; Wu G; Yang SZ; Mu BZ
    World J Microbiol Biotechnol; 2014 May; 30(5):1473-84. PubMed ID: 24297330
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pilot plant production of rhamnolipid biosurfactant by Pseudomonas aeruginosa.
    Reiling HE; Thanei-Wyss U; Guerra-Santos LH; Hirt R; Käppeli O; Fiechter A
    Appl Environ Microbiol; 1986 May; 51(5):985-9. PubMed ID: 3089151
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbon spectrum utilization by an indigenous strain of Pseudomonas aeruginosa NCIM 5514: Production, characterization and surface active properties of biosurfactant.
    Varjani SJ; Upasani VN
    Bioresour Technol; 2016 Dec; 221():510-516. PubMed ID: 27677153
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production of rhamnolipid biosurfactant by fed-batch culture of Pseudomonas aeruginosa using glucose as a sole carbon source.
    Lee Y; Lee SY; Yang JW
    Biosci Biotechnol Biochem; 1999 May; 63(5):946-7. PubMed ID: 10380638
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved production of biosurfactant with newly isolated Pseudomonas aeruginosa S2.
    Chen SY; Lu WB; Wei YH; Chen WM; Chang JS
    Biotechnol Prog; 2007; 23(3):661-6. PubMed ID: 17461551
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of rhamnolipid biosurfactants produced through submerged fermentation using orange fruit peelings as sole carbon source.
    George S; Jayachandran K
    Appl Biochem Biotechnol; 2009 Sep; 158(3):694-705. PubMed ID: 18716921
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of glycolipid biosurfactant from Pseudomonas aeruginosa CPCL isolated from petroleum-contaminated soil.
    Arutchelvi J; Doble M
    Lett Appl Microbiol; 2010 Jul; 51(1):75-82. PubMed ID: 20477962
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.