These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 10669510)

  • 1. Gap junction effects on precision and frequency of a model pacemaker network.
    Moortgat KT; Bullock TH; Sejnowski TJ
    J Neurophysiol; 2000 Feb; 83(2):984-97. PubMed ID: 10669510
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Precision of the pacemaker nucleus in a weakly electric fish: network versus cellular influences.
    Moortgat KT; Bullock TH; Sejnowski TJ
    J Neurophysiol; 2000 Feb; 83(2):971-83. PubMed ID: 10669509
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamics of a neuronal pacemaker in the weakly electric fish Apteronotus.
    Shifman AR; Sun Y; Benoit CM; Lewis JE
    Sci Rep; 2020 Oct; 10(1):16707. PubMed ID: 33028878
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distal gap junctions and active dendrites can tune network dynamics.
    Saraga F; Ng L; Skinner FK
    J Neurophysiol; 2006 Mar; 95(3):1669-82. PubMed ID: 16339003
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational model of electrically coupled, intrinsically distinct pacemaker neurons.
    Soto-Treviño C; Rabbah P; Marder E; Nadim F
    J Neurophysiol; 2005 Jul; 94(1):590-604. PubMed ID: 15728775
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pacemaker synchronization of electrically coupled rabbit sinoatrial node cells.
    Verheijck EE; Wilders R; Joyner RW; Golod DA; Kumar R; Jongsma HJ; Bouman LN; van Ginneken AC
    J Gen Physiol; 1998 Jan; 111(1):95-112. PubMed ID: 9417138
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of gap junctions on the firing patterns and synchrony for different external inputs in the striatal fast-spiking neuron network.
    Zhang M; Zhao Z; He P; Wang J
    Biomed Mater Eng; 2014; 24(6):2635-44. PubMed ID: 25226967
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glissandi: transient fast electrocorticographic oscillations of steadily increasing frequency, explained by temporally increasing gap junction conductance.
    Cunningham MO; Roopun A; Schofield IS; Whittaker RG; Duncan R; Russell A; Jenkins A; Nicholson C; Whittington MA; Traub RD
    Epilepsia; 2012 Jul; 53(7):1205-14. PubMed ID: 22686654
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Membrane resonance in bursting pacemaker neurons of an oscillatory network is correlated with network frequency.
    Tohidi V; Nadim F
    J Neurosci; 2009 May; 29(20):6427-35. PubMed ID: 19458214
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-organized synchronous oscillations in a network of excitable cells coupled by gap junctions.
    Lewis TJ; Rinzel J
    Network; 2000 Nov; 11(4):299-320. PubMed ID: 11128169
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrical coupling between model midbrain dopamine neurons: effects on firing pattern and synchrony.
    Komendantov AO; Canavier CC
    J Neurophysiol; 2002 Mar; 87(3):1526-41. PubMed ID: 11877524
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The control of pacemaker modulations for social communication in the weakly electric fish Sternopygus.
    Keller CH; Kawasaki M; Heiligenberg W
    J Comp Physiol A; 1991 Oct; 169(4):441-50. PubMed ID: 1685751
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neuronal Dynamics Underlying Communication Signals in a Weakly Electric Fish: Implications for Connectivity in a Pacemaker Network.
    Lucas KM; Warrington J; Lewis TJ; Lewis JE
    Neuroscience; 2019 Mar; 401():21-34. PubMed ID: 30641115
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism of spontaneous and self-sustained oscillations in networks connected through axo-axonal gap junctions.
    Maex R; De Schutter E
    Eur J Neurosci; 2007 Jun; 25(11):3347-58. PubMed ID: 17553003
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synaptic and nonsynaptic contributions to giant ipsps and ectopic spikes induced by 4-aminopyridine in the hippocampus in vitro.
    Traub RD; Bibbig R; Piechotta A; Draguhn R; Schmitz D
    J Neurophysiol; 2001 Mar; 85(3):1246-56. PubMed ID: 11247993
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms of electrical coupling between pyramidal cells.
    Vigmond EJ; Perez Velazquez JL; Valiante TA; Bardakjian BL; Carlen PL
    J Neurophysiol; 1997 Dec; 78(6):3107-16. PubMed ID: 9405530
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation of antiwaves in gap-junction-coupled chains of neurons.
    Urban A; Ermentrout B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 1):011907. PubMed ID: 23005452
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms of very fast oscillations in networks of axons coupled by gap junctions.
    Munro E; Börgers C
    J Comput Neurosci; 2010 Jun; 28(3):539-55. PubMed ID: 20387109
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solution to the inverse problem of estimating gap-junctional and inhibitory conductance in inferior olive neurons from spike trains by network model simulation.
    Onizuka M; Hoang H; Kawato M; Tokuda IT; Schweighofer N; Katori Y; Aihara K; Lang EJ; Toyama K
    Neural Netw; 2013 Nov; 47():51-63. PubMed ID: 23428796
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Parvocells: a novel interneuron type in the pacemaker nucleus of a weakly electric fish.
    Smith GT; Lu Y; Zakon HH
    J Comp Neurol; 2000 Jul; 423(3):427-39. PubMed ID: 10870083
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.