These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 10669569)

  • 1. Synthesis, molecular modeling, and pharmacological testing of bis-quinolinium cyclophanes: potent, non-peptidic blockers of the apamin-sensitive Ca(2+)-activated K(+) channel.
    Campos Rosa J; Galanakis D; Piergentili A; Bhandari K; Ganellin CR; Dunn PM; Jenkinson DH
    J Med Chem; 2000 Feb; 43(3):420-31. PubMed ID: 10669569
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bis-quinolinium cyclophanes: highly potent and selective non-peptidic blockers of the apamin-sensitive Ca2+-activated K+ channel.
    Conejo-García A; Campos JM
    Curr Med Chem; 2008; 15(13):1305-15. PubMed ID: 18537610
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bis-quinolinium cyclophanes: 6,10-diaza-3(1,3),8(1,4)-dibenzena-1,5(1,4)- diquinolinacyclodecaphane (UCL 1684), the first nanomolar, non-peptidic blocker of the apamin-sensitive Ca(2+)-activated K+ channel.
    Rosa JC; Galanakis D; Ganellin CR; Dunn PM; Jenkinson DH
    J Med Chem; 1998 Jan; 41(1):2-5. PubMed ID: 9438015
    [No Abstract]   [Full Text] [Related]  

  • 4. bis-Quinolinium cyclophanes: 8,14-diaza-1,7(1, 4)-diquinolinacyclotetradecaphane (UCL 1848), a highly potent and selective, nonpeptidic blocker of the apamin-sensitive Ca(2+)-activated K(+) channel.
    Chen JQ; Galanakis D; Ganellin CR; Dunn PM; Jenkinson DH
    J Med Chem; 2000 Sep; 43(19):3478-81. PubMed ID: 11000001
    [No Abstract]   [Full Text] [Related]  

  • 5. Further studies on bis-charged tetraazacyclophanes as potent inhibitors of small conductance Ca(2+)-activated K+ channels.
    Yang D; Arifhodzic L; Ganellin CR; Jenkinson DH
    Eur J Med Chem; 2013 May; 63():907-23. PubMed ID: 23685886
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Compounds that block both intermediate-conductance (IK(Ca)) and small-conductance (SK(Ca)) calcium-activated potassium channels.
    Malik-Hall M; Ganellin CR; Galanakis D; Jenkinson DH
    Br J Pharmacol; 2000 Apr; 129(7):1431-8. PubMed ID: 10742299
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Discrimination between subtypes of apamin-sensitive Ca(2+)-activated K+ channels by gallamine and a novel bis-quaternary quinolinium cyclophane, UCL 1530.
    Dunn PM; Benton DC; Campos Rosa J; Ganellin CR; Jenkinson DH
    Br J Pharmacol; 1996 Jan; 117(1):35-42. PubMed ID: 8825340
    [TBL] [Abstract][Full Text] [Related]  

  • 8. UCL 1684: a potent blocker of Ca2+ -activated K+ channels in rat adrenal chromaffin cells in culture.
    Dunn PM
    Eur J Pharmacol; 1999 Feb; 368(1):119-23. PubMed ID: 10096777
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SK3 is an important component of K(+) channels mediating the afterhyperpolarization in cultured rat SCG neurones.
    Hosseini R; Benton DC; Dunn PM; Jenkinson DH; Moss GW
    J Physiol; 2001 Sep; 535(Pt 2):323-34. PubMed ID: 11533126
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and pharmacological testing of polyaminoquinolines as blockers of the apamin-sensitive Ca2+-activated K+ channel (SK(Ca)).
    Fletcher DI; Ganellin CR; Piergentili A; Dunn PM; Jenkinson DH
    Bioorg Med Chem; 2007 Aug; 15(16):5457-79. PubMed ID: 17560109
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of a pharmacophore of SKCa channel blockers.
    Dilly S; Graulich A; Farce A; Seutin V; Liegeois JF; Chavatte P
    J Enzyme Inhib Med Chem; 2005 Dec; 20(6):517-23. PubMed ID: 16408787
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glucose-mediated inhibition of calcium-activated potassium channels limits α-cell calcium influx and glucagon secretion.
    Dickerson MT; Dadi PK; Altman MK; Verlage KR; Thorson AS; Jordan KL; Vierra NC; Amarnath G; Jacobson DA
    Am J Physiol Endocrinol Metab; 2019 Apr; 316(4):E646-E659. PubMed ID: 30694690
    [TBL] [Abstract][Full Text] [Related]  

  • 13. K+ currents generated by NMDA receptor activation in rat hippocampal pyramidal neurons.
    Shah MM; Haylett DG
    J Neurophysiol; 2002 Jun; 87(6):2983-9. PubMed ID: 12037201
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bis-quinolinium cyclophanes: toward a pharmacophore model for the blockade of apamin-sensitive SKCa channels in sympathetic neurons.
    Galanakis D; Ganellin CR; Chen JQ; Gunasekera D; Dunn PM
    Bioorg Med Chem Lett; 2004 Aug; 14(16):4231-5. PubMed ID: 15261276
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis, molecular modeling, and K+ channel-blocking activity of dequalinium analogues having semirigid linkers.
    Campos Rosa J; Galanakis D; Ganellin CR; Dunn PM
    J Med Chem; 1996 Oct; 39(21):4247-54. PubMed ID: 8863802
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pharmacological properties and functional role of Kslow current in mouse pancreatic beta-cells: SK channels contribute to Kslow tail current and modulate insulin secretion.
    Zhang M; Houamed K; Kupershmidt S; Roden D; Satin LS
    J Gen Physiol; 2005 Oct; 126(4):353-63. PubMed ID: 16186562
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of inhibitors of small- and intermediate-conductance calcium-activated potassium channels, inwardly-rectifying potassium channels and Na(+)/K(+) ATPase on EDHF relaxations in the rat hepatic artery.
    Andersson DA; Zygmunt PM; Movahed P; Andersson TL; Högestätt ED
    Br J Pharmacol; 2000 Apr; 129(7):1490-6. PubMed ID: 10742306
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pharmacological characterization of small-conductance Ca(2+)-activated K(+) channels stably expressed in HEK 293 cells.
    Strøbaek D; Jørgensen TD; Christophersen P; Ahring PK; Olesen SP
    Br J Pharmacol; 2000 Mar; 129(5):991-9. PubMed ID: 10696100
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the concept of a bivalent pharmacophore for SKCa channel blockers: synthesis, pharmacological testing, and radioligand binding studies on mono-, bis-, and tris-quinolinium compounds.
    Galanakis D; Ganellin CR; Dunn PM; Jenkinson DH
    Arch Pharm (Weinheim); 1996 Dec; 329(12):524-8. PubMed ID: 9038419
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SK2 encodes the apamin-sensitive Ca(2+)-activated K(+) channels in the human leukemic T cell line, Jurkat.
    Jäger H; Adelman JP; Grissmer S
    FEBS Lett; 2000 Mar; 469(2-3):196-202. PubMed ID: 10713270
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.