BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 10669645)

  • 1. Glucosylated glycerophosphoethanolamines are the major LDL glycation products and increase LDL susceptibility to oxidation: evidence of their presence in atherosclerotic lesions.
    Ravandi A; Kuksis A; Shaikh NA
    Arterioscler Thromb Vasc Biol; 2000 Feb; 20(2):467-77. PubMed ID: 10669645
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glycated phosphatidylethanolamine promotes macrophage uptake of low density lipoprotein and accumulation of cholesteryl esters and triacylglycerols.
    Ravandi A; Kuksis A; Shaikh NA
    J Biol Chem; 1999 Jun; 274(23):16494-500. PubMed ID: 10347212
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Delay of copper-catalyzed oxidation of low density lipoprotein by in vitro enrichment with choline or ethanolamine plasmalogens.
    Jürgens G; Fell A; Ledinski G; Chen Q; Paltauf F
    Chem Phys Lipids; 1995 Aug; 77(1):25-31. PubMed ID: 7586089
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glycation and oxidation: a role in the pathogenesis of atherosclerosis.
    Lyons TJ
    Am J Cardiol; 1993 Feb; 71(6):26B-31B. PubMed ID: 8434558
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Why is glycated LDL more sensitive to oxidation than native LDL? A comparative study.
    Sobal G; Menzel J; Sinzinger H
    Prostaglandins Leukot Essent Fatty Acids; 2000 Oct; 63(4):177-86. PubMed ID: 11049692
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glycation and glycoxidation of low-density lipoproteins by glucose and low-molecular mass aldehydes. Formation of modified and oxidized particles.
    Knott HM; Brown BE; Davies MJ; Dean RT
    Eur J Biochem; 2003 Sep; 270(17):3572-82. PubMed ID: 12919321
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of alpha-tocopherol on LDL oxidation and glycation: in vitro and in vivo studies.
    Li D; Devaraj S; Fuller C; Bucala R; Jialal I
    J Lipid Res; 1996 Sep; 37(9):1978-86. PubMed ID: 8895064
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo and in vitro evidence for the glycoxidation of low density lipoprotein in human atherosclerotic plaques.
    Imanaga Y; Sakata N; Takebayashi S; Matsunaga A; Sasaki J; Arakawa K; Nagai R; Horiuchi S; Itabe H; Takano T
    Atherosclerosis; 2000 Jun; 150(2):343-55. PubMed ID: 10856526
    [TBL] [Abstract][Full Text] [Related]  

  • 9. p-hydroxyphenylacetaldehyde, an aldehyde generated by myeloperoxidase, modifies phospholipid amino groups of low density lipoprotein in human atherosclerotic intima.
    Heller JI; Crowley JR; Hazen SL; Salvay DM; Wagner P; Pennathur S; Heinecke JW
    J Biol Chem; 2000 Apr; 275(14):9957-62. PubMed ID: 10744670
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phospholipids and oxophospholipids in atherosclerotic plaques at different stages of plaque development.
    Ravandi A; Babaei S; Leung R; Monge JC; Hoppe G; Hoff H; Kamido H; Kuksis A
    Lipids; 2004 Feb; 39(2):97-109. PubMed ID: 15134136
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glucose oxidation and low-density lipoprotein-induced macrophage ceroid accumulation: possible implications for diabetic atherosclerosis.
    Hunt JV; Bottoms MA; Clare K; Skamarauskas JT; Mitchinson MJ
    Biochem J; 1994 May; 300 ( Pt 1)(Pt 1):243-9. PubMed ID: 8198540
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of glycation on the properties of lipoprotein(a).
    Makino K; Furbee JW; Scanu AM; Fless GM
    Arterioscler Thromb Vasc Biol; 1995 Mar; 15(3):385-91. PubMed ID: 7749849
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low-density-lipoprotein (LDL)-bound flavonoids increase the resistance of LDL to oxidation and glycation under pathophysiological concentrations of glucose in vitro.
    Wu CH; Lin JA; Hsieh WC; Yen GC
    J Agric Food Chem; 2009 Jun; 57(11):5058-64. PubMed ID: 19489629
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glucose influence on copper ion-dependent oxidation of low density lipoprotein.
    Ghaffari MA; Mojab S
    Iran Biomed J; 2009 Jan; 13(1):59-64. PubMed ID: 19252679
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lipoxygenase contributes to the oxidation of lipids in human atherosclerotic plaques.
    Folcik VA; Nivar-Aristy RA; Krajewski LP; Cathcart MK
    J Clin Invest; 1995 Jul; 96(1):504-10. PubMed ID: 7615823
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anti-modified LDL antibodies, LDL-containing immune complexes, and susceptibility of LDL to in vitro oxidation in patients with type 2 diabetes.
    Mironova MA; Klein RL; Virella GT; Lopes-Virella MF
    Diabetes; 2000 Jun; 49(6):1033-41. PubMed ID: 10866057
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lipid advanced glycosylation: pathway for lipid oxidation in vivo.
    Bucala R; Makita Z; Koschinsky T; Cerami A; Vlassara H
    Proc Natl Acad Sci U S A; 1993 Jul; 90(14):6434-8. PubMed ID: 8341651
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glycation of low-density lipoproteins by methylglyoxal and glycolaldehyde gives rise to the in vitro formation of lipid-laden cells.
    Brown BE; Dean RT; Davies MJ
    Diabetologia; 2005 Feb; 48(2):361-9. PubMed ID: 15660260
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cosupplementation with coenzyme Q prevents the prooxidant effect of alpha-tocopherol and increases the resistance of LDL to transition metal-dependent oxidation initiation.
    Thomas SR; Neuzil J; Stocker R
    Arterioscler Thromb Vasc Biol; 1996 May; 16(5):687-96. PubMed ID: 8963727
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation of N-(hexanoyl)ethanolamine, a novel phosphatidylethanolamine adduct, during the oxidation of erythrocyte membrane and low-density lipoprotein.
    Tsuji K; Kawai Y; Kato Y; Osawa T
    Biochem Biophys Res Commun; 2003 Jul; 306(3):706-11. PubMed ID: 12810076
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.